Nothing
#' Kim Filter
#'
#' @param ssm list describing the state space model, must include names
#' B0 - N_b x 1 x n_state array of matrices, initial guess for the unobserved components
#' P0 - N_b x N_b x n_state array of matrices, initial guess for the covariance matrix of the unobserved components
#' Dm - N_b x 1 x n_state array of matrices, constant matrix for the state equation
#' Am - N_y x 1 x n_state array of matrices, constant matrix for the observation equation
#' Fm - N_b X p x n_state array of matrices, state transition matrix
#' Hm - N_y x N_b x n_state array of matrices, observation matrix
#' Qm - N_b x N_b x n_state array of matrices, state error covariance matrix
#' Rm - N_y x N_y x n_state array of matrices, state error covariance matrix
#' betaO - N_y x N_o x n_state array of matrices, coefficient matrix for the observation exogenous data
#' betaS - N_b x N_s x n_state array of matrices, coefficient matrix for the state exogenous data
#' Pm - n_state x n_state matrix, state transition probability matrix
#' @param yt N x T matrix of data
#' @param Xo N_o x T matrix of exogenous observation data
#' @param Xs N_s x T matrix of exogenous state
#' @param weight column matrix of weights, T x 1
#' @param smooth boolean indication whether to run the backwards smoother
#' @return list of cubes and matrices output by the Kim filter
#' @examples
#' \dontrun{
#' #Stock and Watson Markov switching dynamic common factor
#' library(kimfilter)
#' library(data.table)
#' data(sw_dcf)
#' data = sw_dcf[, colnames(sw_dcf) != "dcoinc", with = FALSE]
#' vars = colnames(data)[colnames(data) != "date"]
#'
#' #Set up the state space model
#' ssm = list()
#' ssm[["Fm"]] = rbind(c(0.8760, -0.2171, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
#' c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
#' c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
#' c(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 0.0364, -0.0008, 0, 0, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 0, 0, -0.2965, -0.0657, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 0, 0, 0, 0, -0.3959, -0.1903, 0, 0),
#' c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),
#' c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.2436, 0.1281),
#' c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0))
#' ssm[["Fm"]] = array(ssm[["Fm"]], dim = c(dim(ssm[["Fm"]]), 2))
#' ssm[["Dm"]] = matrix(c(-1.5700, rep(0, 11)), nrow = nrow(ssm[["Fm"]]), ncol = 1)
#' ssm[["Dm"]] = array(ssm[["Dm"]], dim = c(dim(ssm[["Dm"]]), 2))
#' ssm[["Dm"]][1,, 2] = 0.2802
#' ssm[["Qm"]] = diag(c(1, 0, 0, 0, 0.0001, 0, 0.0001, 0, 0.0001, 0, 0.0001, 0))
#' ssm[["Qm"]] = array(ssm[["Qm"]], dim = c(dim(ssm[["Qm"]]), 2))
#' ssm[["Hm"]] = rbind(c(0.0058, -0.0033, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
#' c(0.0011, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
#' c(0.0051, -0.0033, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),
#' c(0.0012, -0.0005, 0.0001, 0.0002, 0, 0, 0, 0, 0, 0, 1, 0))
#' ssm[["Hm"]] = array(ssm[["Hm"]], dim = c(dim(ssm[["Hm"]]), 2))
#' ssm[["Am"]] = matrix(0, nrow = nrow(ssm[["Hm"]]), ncol = 1)
#' ssm[["Am"]] = array(ssm[["Am"]], dim = c(dim(ssm[["Am"]]), 2))
#' ssm[["Rm"]] = matrix(0, nrow = nrow(ssm[["Am"]]), ncol = nrow(ssm[["Am"]]))
#' ssm[["Rm"]] = array(ssm[["Rm"]], dim = c(dim(ssm[["Rm"]]), 2))
#' ssm[["B0"]] = matrix(c(rep(-4.60278, 4), 0, 0, 0, 0, 0, 0, 0, 0))
#' ssm[["B0"]] = array(ssm[["B0"]], dim = c(dim(ssm[["B0"]]), 2))
#' ssm[["B0"]][1:4,, 2] = rep(0.82146, 4)
#' ssm[["P0"]] = rbind(c(2.1775, 1.5672, 0.9002, 0.4483, 0, 0, 0, 0, 0, 0, 0, 0),
#' c(1.5672, 2.1775, 1.5672, 0.9002, 0, 0, 0, 0, 0, 0, 0, 0),
#' c(0.9002, 1.5672, 2.1775, 1.5672, 0, 0, 0, 0, 0, 0, 0, 0),
#' c(0.4483, 0.9002, 1.5672, 2.1775, 0, 0, 0, 0, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 0.0001, 0, 0, 0, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 0, 0.0001, 0, 0, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 0, 0, 0.0001, -0.0001, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 0, 0, -0.0001, 0.0001, 0, 0, 0, 0),
#' c(0, 0, 0, 0, 0, 0, 0, 0, 0.0001, -0.0001, 0, 0),
#' c(0, 0, 0, 0, 0, 0, 0, 0, -0.0001, 0.0001, 0, 0),
#' c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0001, -0.0001),
#' c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0001, 0.0001))
#' ssm[["P0"]] = array(ssm[["P0"]], dim = c(dim(ssm[["P0"]]), 2))
#' ssm[["Pm"]] = rbind(c(0.8406, 0.0304),
#' c(0.1594, 0.9696))
#'
#' #Log, difference and standardize the data
#' data[, c(vars) := lapply(.SD, log), .SDcols = c(vars)]
#' data[, c(vars) := lapply(.SD, function(x){
#' x - shift(x, type = "lag", n = 1)
#' }), .SDcols = c(vars)]
#' data[, c(vars) := lapply(.SD, scale), .SDcols = c(vars)]
#'
#' #Convert the data to an NxT matrix
#' yt = t(data[, c(vars), with = FALSE])
#' kf = kim_filter(ssm, yt, smooth = TRUE)
#' }
#' @export
kim_filter = function(ssm, yt, Xo = NULL, Xs = NULL, weight = NULL, smooth = FALSE){
kim_filter_cpp(ssm, yt, Xo, Xs, weight, smooth)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.