Nothing
## ----eval=FALSE---------------------------------------------------------------
# library(ggplot2)
# library(kko)
# library(knockoff)
# set.seed(12345)
#
# ### generate regression coefficent
# p=20 # number of predictors
# sig_mag=10 # signal strength
# s=5 # sparsity, number of nonzero component functions
# reg_coef=c(rep(1,s),rep(0,p-s)) # regression coefficient
# reg_coef=reg_coef*(2*(rnorm(p)>0)-1)*sig_mag
#
# ### generate response and design
# model="poly"
# n= 600 # sample size
# X=matrix(rnorm(n*p),n,p) # generate design
# X_k = create.second_order(X) # generate knockoff
# y=generate_data(X,reg_coef,model) # response
## ----eval=FALSE---------------------------------------------------------------
# rkernel="laplacian" # kernel choice
# rk_scale=1 # scaling paramtere of kernel
# rfn_range=c(2,3,4) # number of random features
# cv_folds=15 # folds of cross-validation in group lasso
# n_stb=200 # number of subsampling for importance scores
# n_stb_tune=100 # number of subsampling for tuning random feature number
# frac_stb=1/2 # fraction of subsample
# nCores_para=2 # number of cores for parallelization
#
# ### KKO selection
# kko_fit=kko(X,y,X_k,rfn_range,n_stb_tune,n_stb,cv_folds,frac_stb,nCores_para,rkernel,rk_scale)
## ----echo=FALSE---------------------------------------------------------------
library(kko)
library(knockoff)
library(ggplot2)
load("demo.Rdata")
p=length(kko_fit$importance_score)
## ----fig.width=6,fig.height=4-------------------------------------------------
reg_coef # true regression coefficient
W=kko_fit$importance_score # knockoff importance scores generated by KKO
W
mydata=data.frame(W=W,var_group=ifelse(reg_coef!=0,"Active","NUll"))
myplot = ggplot(mydata, aes(W, fill = var_group)) +
geom_histogram(color = "gray2",binwidth=1/p) + theme_bw()+
xlab("Importance scores")+ylab("Number of variables")+
xlim(-1,1)
print(myplot)
## -----------------------------------------------------------------------------
fdr=0.2 #FDR control level
thres = knockoff.threshold(W, fdr=fdr) # thresholding on scores by knockoff filter
selected = which(W >= thres)
selected # indices of selected variables
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.