Nothing
# install.packages("Klovan_0.0.9.tar.gz", repos = NULL, type = "source") # library(klovan)
# install.packages("klovan") # library(klovan) library(ggplot2)
#loading data data("Klovan_Row80", package = "klovan") data("Klovan_2D_all_outlier", package = "klovan") #apply a range transform to your data T_klovan <- klovan::range_transform(Klovan_Row80)
- Eigenvectors: also called Principal Components - Eigenvalues: the factor by which the eigenvector is scaled
#build a correlation matrix cov_mtrx <- klovan::covar_mtrx(T_klovan) cov_mtrx #calulate Eiegn values klovan::calc_eigenvalues(cov_mtrx) #calulate Eiegn vectors klovan::calc_eigenvectors(cov_mtrx)
eigen_data <- klovan::eigen_contribution(T_klovan) eigen_data
klovan::scree_plot(eigen_data)
knitr::include_graphics("scree_plot.png")
klovan::scree_plot(eigen_data, bar_fill = "green", outline = "darkgreen", eigen_line = "lightblue")
knitr::include_graphics("scree_plot_color.png")
#make a correlation plot klovan::cor_mtrx(Klovan_Row80)
klovan::pc_cor_plot(Klovan_Row80, "PC1", "PC2") #see function decimation for more information on how to interpret this plot
#factor analysis klovan::factor_analysis(Klovan_Row80)
#make correlation plot using factor data klovan::factor_cor_plot(klovan::factor_analysis(Klovan_Row80), "FAC1", "FAC2") #customize color choices klovan::factor_cor_plot(Klovan_Row80, "FAC1", "FAC3", text_col = "pink", line_col = "red")
#use inverse distance weighted method for interpolation inv_dis_data <- klovan::inv_dis_wt(Klovan_Row80, 3) summary(inv_dis_data) #view data summary
klovan::factor_score_plot(a, FALSE, data = Klovan_Row80) + ggforce::geom_ellipse( aes(x0 = 3900, y0 = 1700, a = 600, b = 400, angle = pi/2.5), color = "white")
knitr::include_graphics("invs_dis3.png")
klovan::factor_score_plot(inv_dis_data, TRUE, data = Klovan_Row80) + ggforce::geom_ellipse( aes(x0 = 3900, y0 = 1700, a = 600, b = 400, angle = pi/2.5), color = "white") + ggforce::geom_circle( aes(x = NULL, y = NULL, x0 = 3300, y0 = 3500, r = 400), color = "white", inherit.aes = FALSE)
knitr::include_graphics("invs_dis.png")
#plot variogram for use in kriging klovan::vario_plot(Klovan_Row80, factor = 1, nugget = .214, nlags = 10, sill = 7.64507, range_val = 6271.83, model_name = "Gau1")
#use kriging method for interpolation and #plot with factors overlapped and separated krig_data <- klovan::kriging.auto(Klovan_Row80, 3) #customize available for nugget, psill, range, and model see function documentation for more details summary(krig_data) #view data summary
klovan::factor_score_plot(krig_data, TRUE, data = Klovan_Row80) + ggforce::geom_ellipse( aes(x0 = 3900, y0 = 1700, a = 600, b = 400, angle = pi/2.5), color = "white") + ggforce::geom_circle( aes(x = NULL, y = NULL, x0 = 3300, y0 = 3500, r = 400), color = "white", inherit.aes = FALSE)
knitr::include_graphics("krig_fin1.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.