Nothing
# Copyright (C) 2022 - Trustees of Boston University
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#' Toy Dataset for knnmi package
#'
#' @docType data
#'
#' @usage data(mutual_info_df)
#'
#' @format A data frame with 100 rows and 10 columns
#'
"mutual_info_df"
## Some parameters
######################################
# N <- 100 # number of observations
# SD <- 1 # noise
# MU <- 0 # mean of independent variables
# # conditional probability table
# CPT <- c("00"=.1,"01"=.5,"10"=.3,"11"=.7)
# PATH <- file.path(".")
#
# ######################################
# ## Case 1: all continuous
# ## Xc --> Zc <-- Yc
# ######################################
# set.seed(123)
# Xc <- rnorm(N, mean = MU, sd = SD)
# Yc <- rnorm(N, mean = MU, sd = SD)
# Zc_XcYc <- rnorm(N, mean = Xc+Yc, sd = SD)
#
# ######################################
# # Case 2: mixed discrete/continuous
# ## Xd --> Wc <-- Yc
# ######################################
# set.seed(456)
# Xd <- sample(c(0L,1L),size = N, replace = TRUE)
# Wc_XdYc <- rnorm(N, mean = Xd + Yc, sd = SD)
#
# ######################################
# ## Case 3: all discrete
# ## Xd --> Zd <-- Yd
# ######################################
#
# ## create conditional probability table P(Zd | Xd, Yd)
# ##
# ## generate data
# set.seed(789)
# Yd <- sample(c(0L,1L),size = N, replace = TRUE)
# probs <- data.frame(Xd, Yd, XY = sprintf("%d%d", Xd, Yd)) |>
# dplyr::mutate(P1 = CPT[XY]) |>
# dplyr::mutate(P0 = 1 - P1)
# head(probs)
#
# set.seed(987)
# Zd_XdYd <- apply(probs |> dplyr::select(P0,P1),1,function(P) sample(c(0L,1L),size=1,prob=P))
#
# ######################################
# ## Create a data frame
# ######################################
# mutual_info_df <- data.frame(
# Xc,Yc,Zc_XcYc,Xd,Wc_XdYc,Yd,Zd_XdYd
# )
#
# # usethis::use_data(mutual_info_df )
#
# ## save toy dataset
# #saveRDS(mutual_info_df, file = file.path(PATH,"toy_dataset.rds"))
# #write.csv(mutual_info_df, file = file.path(PATH,"toy_dataset.csv"))
#
# ######################################
# ## Check marginal/partial correlations
# ######################################
# ## marginal correlations
# as.dist(round(cor(mutual_info_df),3))
# # Xc Yc Zc_XcYc Xd Wc_XdYc Yd
# # Yc -0.050
# # Zc_XcYc 0.478 0.612
# # Xd -0.043 0.042 -0.061
# # Wc_XdYc 0.003 0.700 0.412 0.365
# # Yd 0.006 0.068 0.049 0.090 0.102
# # Zd_XdYd -0.060 -0.076 -0.139 0.257 0.026 0.410
#
# ## partial correlations for Xc --> Zc <-- Yc
# as.dist(ppcor::pcor(mutual_info_df |> dplyr::select(Xc,Yc,Zc_XcYc))$estimate)
# # Xc Yc
# # Yc -0.4917019
# # Zc_XcYc 0.6428611 0.7241640
#
# ## partial correlations for Xd --> Wc <-- Yc
# as.dist(ppcor::pcor(mutual_info_df |> dplyr::select(Xd,Yc,Wc_XdYc))$estimate)
# # Xd Yc
# # Yc -0.3214877
# # Wc_XdYc 0.4706841 0.7359997
#
# ## partial correlations for Xd --> Zd <-- Yd
# as.dist(ppcor::pcor(mutual_info_df |> dplyr::select(Xd,Yd,Zd_XdYd))$estimate)
# # Xd Yd
# # Yd -0.0178907
# # Zd_XdYd 0.2428992 0.4022989
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.