stat.lasso_lambdadiff | R Documentation |
Fit the lasso path and computes the difference statistic
W_j = Z_j - \tilde{Z}_j
where Z_j and \tilde{Z}_j are the maximum values of the regularization parameter λ at which the jth variable and its knockoff enter the penalized linear regression model, respectively.
stat.lasso_lambdadiff(X, X_k, y, ...)
X |
n-by-p matrix of original variables. |
X_k |
n-by-p matrix of knockoff variables. |
y |
vector of length n, containing the response variables. It should be numeric. |
... |
additional arguments specific to |
This function uses glmnet
to compute the lasso path
on a fine grid of λ's and is a wrapper around the more general
stat.glmnet_lambdadiff.
The nlambda
parameter can be used to control the granularity of the
grid of λ's. The default value of nlambda
is 500
.
Unless a lambda sequence is provided by the user, this function generates it on a
log-linear scale before calling glmnet
(default 'nlambda': 500).
For a complete list of the available additional arguments, see glmnet
or lars
.
A vector of statistics W of length p.
Other statistics:
stat.forward_selection()
,
stat.glmnet_coefdiff()
,
stat.glmnet_lambdadiff()
,
stat.lasso_coefdiff_bin()
,
stat.lasso_coefdiff()
,
stat.lasso_lambdadiff_bin()
,
stat.random_forest()
,
stat.sqrt_lasso()
,
stat.stability_selection()
set.seed(2022) p=200; n=100; k=15 mu = rep(0,p); Sigma = diag(p) X = matrix(rnorm(n*p),n) nonzero = sample(p, k) beta = 3.5 * (1:p %in% nonzero) y = X %*% beta + rnorm(n) knockoffs = function(X) create.gaussian(X, mu, Sigma) # Basic usage with default arguments result = knockoff.filter(X, y, knockoffs=knockoffs, statistic=stat.lasso_lambdadiff) print(result$selected) # Advanced usage with custom arguments foo = stat.lasso_lambdadiff k_stat = function(X, X_k, y) foo(X, X_k, y, nlambda=200) result = knockoff.filter(X, y, knockoffs=knockoffs, statistic=k_stat) print(result$selected)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.