| stat.lasso_lambdadiff | R Documentation | 
Fit the lasso path and computes the difference statistic
W_j = Z_j - \tilde{Z}_j
where Z_j and \tilde{Z}_j are the maximum values of the regularization parameter λ at which the jth variable and its knockoff enter the penalized linear regression model, respectively.
stat.lasso_lambdadiff(X, X_k, y, ...)
X | 
 n-by-p matrix of original variables.  | 
X_k | 
 n-by-p matrix of knockoff variables.  | 
y | 
 vector of length n, containing the response variables. It should be numeric.  | 
... | 
 additional arguments specific to   | 
This function uses glmnet to compute the lasso path
on a fine grid of λ's and is a wrapper around the more general
stat.glmnet_lambdadiff.
The nlambda parameter can be used to control the granularity of the 
grid of λ's. The default value of nlambda is 500.
Unless a lambda sequence is provided by the user, this function generates it on a 
log-linear scale before calling glmnet (default 'nlambda': 500).
For a complete list of the available additional arguments, see glmnet
or lars.
A vector of statistics W of length p.
Other statistics: 
stat.forward_selection(),
stat.glmnet_coefdiff(),
stat.glmnet_lambdadiff(),
stat.lasso_coefdiff_bin(),
stat.lasso_coefdiff(),
stat.lasso_lambdadiff_bin(),
stat.random_forest(),
stat.sqrt_lasso(),
stat.stability_selection()
set.seed(2022)
p=200; n=100; k=15
mu = rep(0,p); Sigma = diag(p)
X = matrix(rnorm(n*p),n)
nonzero = sample(p, k)
beta = 3.5 * (1:p %in% nonzero)
y = X %*% beta + rnorm(n)
knockoffs = function(X) create.gaussian(X, mu, Sigma)
# Basic usage with default arguments
result = knockoff.filter(X, y, knockoffs=knockoffs, 
                           statistic=stat.lasso_lambdadiff)
print(result$selected)
# Advanced usage with custom arguments
foo = stat.lasso_lambdadiff
k_stat = function(X, X_k, y) foo(X, X_k, y, nlambda=200)
result = knockoff.filter(X, y, knockoffs=knockoffs, statistic=k_stat)
print(result$selected)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.