bezier_angle | R Documentation |
Description of the intersection of two Bezier curves including position and angle of the point of intersection.
bezier_angle(P1, P2)
bezier_intersect(P1,P2, type='pos', ...)
P1 , P2 |
Control points for two Bezier curves as per
|
type |
In function |
... |
In function |
Function bezier_intersect()
uses constOptim()
to find
the point of closest approach.
Function bezier_angle()
returns the square of the cosine of the
intersection angle (so strands crossing at right angles return zero).
If the strands do not intersect, then return 1. This is needed
because sometimes, strands which intersect are perturbed by the
optimization routine so that they are disjoint.
In function bezier_intersect()
, argument type
may take
the following values:
Position of intersection point
Boolean, indicating whether the strands abut; the ‘intersection’ point is the end of one curve and the beginning of the other
Boolean, indicating whether or not the strands actually intersect
Bezier parameter t
for the intersection point;
actually return two parameters, one for each curve
Details of the optimization output
Everything
If the curves intersect in more than one point, the behaviour of these routines is not defined.
Robin K. S. Hankin
bezier
P1 <- matrix(c(1, 3, 6, 4, 7, 3, 2, 2),ncol=2)
P2 <- matrix(c(4, 5, 5, 3, 7, 2, 5, 1),ncol=2)
x1 <- bezier(P1,n=100)
x2 <- bezier(P2,n=100)
plot(x1,asp=1,xlim=c(0,8),ylim=c(0,8))
points(x2)
myseg(P1)
myseg(P2)
jj <- bezier_intersect(P1,P2)
points(x=jj[1],y=jj[2],pch=16,cex=3,col='blue')
# looks close to orthogonal, actually 82 degrees:
acos(sqrt(bezier_angle(P1,P2)))*180/pi
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.