lamle-package: Maximum Likelihood Estimation of Latent Variable Models

lamle-packageR Documentation

Maximum Likelihood Estimation of Latent Variable Models

Description

Approximate marginal maximum likelihood estimation of multidimensional latent variable models via adaptive quadrature or Laplace approximations to the integrals in the likelihood function, as presented for confirmatory factor analysis models in Jin, S., Noh, M., and Lee, Y. (2018) <doi:10.1080/10705511.2017.1403287>, for item response theory models in Andersson, B., and Xin, T. (2021) <doi:10.3102/1076998620945199>, and for generalized linear latent variable models in Andersson, B., Jin, S., and Zhang, M. (2023) <doi:10.1016/j.csda.2023.107710>. Models implemented include the generalized partial credit model, the graded response model, and generalized linear latent variable models for Poisson, negative-binomial and normal distributions. Supports a combination of binary, ordinal, count and continuous observed variables and multiple group models.

Details

The DESCRIPTION file: This package was not yet installed at build time.
Index: This package was not yet installed at build time.

Author(s)

Björn Andersson, Shaobo Jin and Maoxin Zhang.

Maintainer: Björn Andersson <bjoern.h.andersson@gmail.com>

References

Andersson, B., Jin, S., and Zhang, M. (2023). Fast estimation of multiple group generalized linear latent variable models for categorical observed variables. Computational Statistics and Data Analysis, 182, 1-12. <doi:10.1016/j.csda.2023.107710>

Andersson, B., and Xin, T. (2021). Estimation of latent regression item response theory models using a second-order Laplace approximation. Journal of Educational and Behavioral Statistics, 46(2), 244-265. <doi:10.3102/1076998620945199>

Huber, P., Ronchetti, E., and Victoria-Feser, M.P. (2004). Estimation of generalized linear latent variable models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(4), 893-908. <doi:10.1111/j.1467-9868.2004.05627.x>

Jin, S., Noh, M., and Lee, Y. (2018). H-Likelihood Approach to Factor Analysis for Ordinal Data. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 530-540. <doi:10.1080/10705511.2017.1403287>

Shun, Z., and McCullagh, P. (1995). Laplace approximation of high dimensional integrals. Journal of the Royal Statistical Society: Series B (Methodological), 57(4), 749-760. <doi:10.1111/j.2517-6161.1995.tb02060.x>


lamle documentation built on Aug. 25, 2023, 9:07 a.m.