| ROC | R Documentation | 
This function calculates ROC Curves and AUC values with 95% confidence range. It also works for multi-categorical models.
ROC(tag, score, multis = NA)
tag | 
 Vector. Real known label  | 
score | 
 Vector. Predicted value or model's result  | 
multis | 
 Data.frame. Containing columns with each category score (only used when more than 2 categories coexist)  | 
List with ROC's results, area under the curve (AUC) and their CI.
To plot results, use the mplot_roc() function.
Other Machine Learning: 
conf_mat(),
export_results(),
gain_lift(),
h2o_automl(),
h2o_predict_MOJO(),
h2o_selectmodel(),
impute(),
iter_seeds(),
lasso_vars(),
model_metrics(),
model_preprocess(),
msplit()
Other Model metrics: 
conf_mat(),
errors(),
gain_lift(),
loglossBinary(),
model_metrics()
data(dfr) # Results for AutoML Predictions
lapply(dfr[c(1, 2)], head)
# ROC Data for Binomial Model
roc1 <- ROC(dfr$class2$tag, dfr$class2$scores)
lapply(roc1, head)
# ROC Data for Multi-Categorical Model
roc2 <- ROC(dfr$class3$tag, dfr$class3$score,
  multis = subset(dfr$class3, select = -c(tag, score))
)
lapply(roc2, head)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.