View source: R/model_metrics.R
gain_lift | R Documentation |
This function calculates cumulative gain, lift, and response
values for a predictive score of a specific target. You can use the
mplot_gain()
function to create a plot.
gain_lift(
tag,
score,
target = "auto",
splits = 10,
plot = FALSE,
quiet = FALSE
)
tag |
Vector. Real known label |
score |
Vector. Predicted value or model's result |
target |
Value. Which is your target positive value? If set to 'auto', the target with largest mean(score) will be selected. Change the value to overwrite. Only used when binary categorical model. |
splits |
Integer. Number of percentiles to split the data |
plot |
Boolean. Plot results? Uses |
quiet |
Boolean. Quiet all messages, warnings, recommendations? |
data.frame when plot=FALSE
or plot when plot=TRUE
.
Other Machine Learning:
ROC()
,
conf_mat()
,
export_results()
,
h2o_automl()
,
h2o_predict_MOJO()
,
h2o_selectmodel()
,
impute()
,
iter_seeds()
,
lasso_vars()
,
model_metrics()
,
model_preprocess()
,
msplit()
Other Model metrics:
ROC()
,
conf_mat()
,
errors()
,
loglossBinary()
,
model_metrics()
data(dfr) # Results for AutoML Predictions
head(dfr$class2)
# Results for Binomial Model
gain_lift(dfr$class2$tag, dfr$class2$scores, target = "FALSE")
gain_lift(dfr$class2$tag, dfr$class2$scores, target = "TRUE", splits = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.