| lasso_vars | R Documentation |
Use Lasso regression to identify the most relevant variables that
can predict/identify another variable. You might want to compare
with corr_var() and/or x2y() results to compliment
the analysis No need to standardize, center or scale your data.
Tidyverse friendly.
lasso_vars(
df,
variable,
ignore = NULL,
nlambdas = 100,
nfolds = 10,
top = 20,
quiet = FALSE,
seed = 123,
...
)
df |
Dataframe. Any dataframe is valid as |
variable |
Variable. Dependent variable or response. |
ignore |
Character vector. Variables to exclude from study. |
nlambdas |
Integer. Number of lambdas to be used in a search. |
nfolds |
Integer. Number of folds for K-fold cross-validation (>= 2). |
top |
Integer. Plot top n results only. |
quiet |
Boolean. Keep quiet? If not, informative messages will be shown. |
seed |
Numeric. |
... |
Additional parameters passed to |
List. Contains lasso model coefficients, performance metrics, the actual model fitted and a plot.
Other Machine Learning:
ROC(),
conf_mat(),
export_results(),
gain_lift(),
h2o_automl(),
h2o_predict_MOJO(),
h2o_selectmodel(),
impute(),
iter_seeds(),
model_metrics(),
model_preprocess(),
msplit()
Other Exploratory:
corr_cross(),
corr_var(),
crosstab(),
df_str(),
distr(),
freqs(),
freqs_df(),
freqs_list(),
freqs_plot(),
missingness(),
plot_cats(),
plot_df(),
plot_nums(),
tree_var()
## Not run:
# CRAN
Sys.unsetenv("LARES_FONT") # Temporal
data(dft) # Titanic dataset
m <- lasso_vars(dft, Survived, ignore = c("Cabin"))
print(m$coef)
print(m$metrics)
plot(m$plot)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.