mplot_importance: Variables Importances Plot

View source: R/model_plots.R

mplot_importanceR Documentation

Variables Importances Plot

Description

This function plots Variable Importances

Usage

mplot_importance(
  var,
  imp,
  colours = NA,
  limit = 15,
  model_name = NA,
  subtitle = NA,
  save = FALSE,
  subdir = NA,
  file_name = "viz_importance.png"
)

Arguments

var

Vector. Variable or column's names

imp

Vector. Importance of said variables. Must have same length as var

colours

If positive and negative contribution is known

limit

Integer. Limit how many variables you wish to plot

model_name

Character. Model's name

subtitle

Character. Subtitle to show in plot

save

Boolean. Save output plot into working directory

subdir

Character. Sub directory on which you wish to save the plot

file_name

Character. File name as you wish to save the plot

Value

Plot with ranked importance variables results.

See Also

Other ML Visualization: mplot_conf(), mplot_cuts(), mplot_cuts_error(), mplot_density(), mplot_full(), mplot_gain(), mplot_lineal(), mplot_metrics(), mplot_response(), mplot_roc(), mplot_splits(), mplot_topcats()

Examples

Sys.unsetenv("LARES_FONT") # Temporal
df <- data.frame(
  variable = LETTERS[1:6],
  importance = c(4, 6, 6.7, 3, 4.8, 6.2) / 100,
  positive = c(TRUE, TRUE, FALSE, TRUE, FALSE, FALSE)
)
head(df)

mplot_importance(
  var = df$variable,
  imp = df$importance,
  model_name = "Random values model"
)

# Add a colour for categories
mplot_importance(
  var = df$variable,
  imp = df$importance,
  colours = df$positive,
  limit = 4
)

lares documentation built on Sept. 13, 2024, 1:08 a.m.