Nothing
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%#
#### latentFactoR S3Methods ####
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%#
# Updated 30.09.2022
# print() Methods ----
# Print `lf_estimate`
# Updated 30.09.2022
#' @export
print.lf_estimate <- function(x, ...)
{
# Print dimensions
print(x$dimensions)
}
# summary() Methods ----
# Summary `lf_estimate`
# Updated 30.09.2022
#' @export
summary.lf_estimate <- function(object, ...)
{
# Print dimensions
print(object$dimensions)
}
# predict() Methods ----
# {xgboost}: predictLearner
# Updated 30.09.2022
#' @export
predictLearner.classif.xgboost.earlystop = function(.learner, .model, .newdata, ...) {
td = .model$task.desc
m = .model$learner.model
cls = td$class.levels
nc = length(cls)
obj = .learner$par.vals$objective
if (is.null(obj))
.learner$par.vals$objective = ifelse(nc == 2L, "binary:logistic", "multi:softprob")
p = predict(m, newdata = data.matrix(BBmisc::convertDataFrameCols(.newdata, ints.as.num = TRUE)), ...)
if (nc == 2L) { #binaryclass
if (.learner$par.vals$objective == "multi:softprob") {
y = matrix(p, nrow = length(p) / nc, ncol = nc, byrow = TRUE)
colnames(y) = cls
} else {
y = matrix(0, ncol = 2, nrow = nrow(.newdata))
colnames(y) = cls
y[, 1L] = 1 - p
y[, 2L] = p
}
if (.learner$predict.type == "prob") {
return(y)
} else {
p = colnames(y)[max.col(y)]
names(p) = NULL
p = factor(p, levels = colnames(y))
return(p)
}
} else { #multiclass
if (.learner$par.vals$objective == "multi:softmax") {
return(factor(p, levels = cls)) #special handling for multi:softmax which directly predicts class levels
} else {
p = matrix(p, nrow = length(p) / nc, ncol = nc, byrow = TRUE)
colnames(p) = cls
if (.learner$predict.type == "prob") {
return(p)
} else {
ind = max.col(p)
cns = colnames(p)
return(factor(cns[ind], levels = cns))
}
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.