Description Usage Arguments Author(s) Examples
Simulate data from a general SEM model including non-linear effects and general link and distribution of variables.
1 2 3 4 |
x |
Model object |
... |
Additional arguments to be passed to the low level functions |
n |
Number of simulated values/individuals |
p |
Parameter value (optional) |
normal |
Logical indicating whether to simulate data from a multivariate normal distribution conditional on exogenous variables hence ignoring functional/distribution definition |
cond |
for internal use |
sigma |
Default residual variance (1) |
rho |
Default covariance parameter (0.5) |
X |
Optional matrix of fixed values of variables (manipulation) |
unlink |
Return Inverse link transformed data |
latent |
Include latent variables (default TRUE) |
use.labels |
convert categorical variables to factors before applying transformation |
seed |
Random seed |
Klaus K. Holst
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | ##################################################
## Logistic regression
##################################################
m <- lvm(y~x+z)
regression(m) <- x~z
distribution(m,~y+z) <- binomial.lvm("logit")
d <- sim(m,1e3)
head(d)
e <- estimate(m,d,estimator="glm")
e
## Simulate a few observation from estimated model
sim(e,n=5)
##################################################
## Poisson
##################################################
distribution(m,~y) <- poisson.lvm()
d <- sim(m,1e4,p=c(y=-1,"y~x"=2,z=1))
head(d)
estimate(m,d,estimator="glm")
mean(d$z); lava:::expit(1)
summary(lm(y~x,sim(lvm(y[1:2]~4*x),1e3)))
##################################################
### Gamma distribution
##################################################
m <- lvm(y~x)
distribution(m,~y+x) <- list(Gamma.lvm(shape=2),binomial.lvm())
intercept(m,~y) <- 0.5
d <- sim(m,1e4)
summary(g <- glm(y~x,family=Gamma(),data=d))
## Not run: MASS::gamma.shape(g)
args(lava::Gamma.lvm)
distribution(m,~y) <- Gamma.lvm(shape=2,log=TRUE)
sim(m,10,p=c(y=0.5))[,"y"]
##################################################
### Beta
##################################################
m <- lvm()
distribution(m,~y) <- beta.lvm(alpha=2,beta=1)
var(sim(m,100,"y,y"=2))
distribution(m,~y) <- beta.lvm(alpha=2,beta=1,scale=FALSE)
var(sim(m,100))
##################################################
### Transform
##################################################
m <- lvm()
transform(m,xz~x+z) <- function(x) x[1]*(x[2]>0)
regression(m) <- y~x+z+xz
d <- sim(m,1e3)
summary(lm(y~x+z + x*I(z>0),d))
##################################################
### Non-random variables
##################################################
m <- lvm()
distribution(m,~x+z+v+w) <- list(Sequence.lvm(0,5),## Seq. 0 to 5 by 1/n
Binary.lvm(), ## Vector of ones
Binary.lvm(0.5), ## 0.5n 0, 0.5n 1
Binary.lvm(interval=list(c(0.3,0.5),c(0.8,1))))
sim(m,10)
##################################################
### Cox model
### piecewise constant hazard
################################################
m <- lvm(t~x)
rates <- c(1,0.5); cuts <- c(0,5)
## Constant rate: 1 in [0,5), 0.5 in [5,Inf)
distribution(m,~t) <- coxExponential.lvm(rate=rates,timecut=cuts)
## Not run:
d <- sim(m,2e4,p=c("t~x"=0.1)); d$status <- TRUE
plot(timereg::aalen(survival::Surv(t,status)~x,data=d,
resample.iid=0,robust=0),spec=1)
L <- approxfun(c(cuts,max(d$t)),f=1,
cumsum(c(0,rates*diff(c(cuts,max(d$t))))),
method="linear")
curve(L,0,100,add=TRUE,col="blue")
## End(Not run)
##################################################
### Cox model
### piecewise constant hazard, gamma frailty
##################################################
m <- lvm(y~x+z)
rates <- c(0.3,0.5); cuts <- c(0,5)
distribution(m,~y+z) <- list(coxExponential.lvm(rate=rates,timecut=cuts),
loggamma.lvm(rate=1,shape=1))
## Not run:
d <- sim(m,2e4,p=c("y~x"=0,"y~z"=0)); d$status <- TRUE
plot(timereg::aalen(survival::Surv(y,status)~x,data=d,
resample.iid=0,robust=0),spec=1)
L <- approxfun(c(cuts,max(d$y)),f=1,
cumsum(c(0,rates*diff(c(cuts,max(d$y))))),
method="linear")
curve(L,0,100,add=TRUE,col="blue")
## End(Not run)
## Equivalent via transform (here with Aalens additive hazard model)
m <- lvm(y~x)
distribution(m,~y) <- aalenExponential.lvm(rate=rates,timecut=cuts)
distribution(m,~z) <- Gamma.lvm(rate=1,shape=1)
transform(m,t~y+z) <- prod
sim(m,10)
## Shared frailty
m <- lvm(c(t1,t2)~x+z)
rates <- c(1,0.5); cuts <- c(0,5)
distribution(m,~y) <- aalenExponential.lvm(rate=rates,timecut=cuts)
distribution(m,~z) <- loggamma.lvm(rate=1,shape=1)
## Not run:
mets::fast.reshape(sim(m,100),varying="t")
## End(Not run)
##################################################
### General multivariate distributions
##################################################
## Not run:
m <- lvm()
distribution(m,~y1+y2,oratio=4) <- VGAM::rbiplackcop
ksmooth2(sim(m,1e4),rgl=FALSE,theta=-20,phi=25)
m <- lvm()
distribution(m,~z1+z2,"or1") <- VGAM::rbiplackcop
distribution(m,~y1+y2,"or2") <- VGAM::rbiplackcop
sim(m,10,p=c(or1=0.1,or2=4))
## End(Not run)
m <- lvm()
distribution(m,~y1+y2+y3,TRUE) <- function(n,...) rmvn0(n,sigma=diag(3)+1)
var(sim(m,100))
## Syntax also useful for univariate generators, e.g.
m <- lvm(y~x+z)
distribution(m,~y,TRUE) <- function(n) rnorm(n,mean=1000)
sim(m,5)
distribution(m,~y,"m1",0) <- rnorm
sim(m,5)
sim(m,5,p=c(m1=100))
##################################################
### Regression design in other parameters
##################################################
## Variance heterogeneity
m <- lvm(y~x)
distribution(m,~y) <- function(n,mean,x) rnorm(n,mean,exp(x)^.5)
if (interactive()) plot(y~x,sim(m,1e3))
## Alternaively, calculate the standard error directly
addvar(m) <- ~sd ## If 'sd' should be part of the resulting data.frame
constrain(m,sd~x) <- function(x) exp(x)^.5
distribution(m,~y) <- function(n,mean,sd) rnorm(n,mean,sd)
if (interactive()) plot(y~x,sim(m,1e3))
## Regression on variance parameter
m <- lvm()
regression(m) <- y~x
regression(m) <- v~x
##distribution(m,~v) <- 0 # No stochastic term
## Alternative:
## regression(m) <- v[NA:0]~x
distribution(m,~y) <- function(n,mean,v) rnorm(n,mean,exp(v)^.5)
if (interactive()) plot(y~x,sim(m,1e3))
## Regression on shape parameter in Weibull model
m <- lvm()
regression(m) <- y ~ z+v
regression(m) <- s ~ exp(0.6*x-0.5*z)
distribution(m,~x+z) <- binomial.lvm()
distribution(m,~cens) <- coxWeibull.lvm(scale=1)
distribution(m,~y) <- coxWeibull.lvm(scale=0.1,shape=~s)
eventTime(m) <- time ~ min(y=1,cens=0)
if (interactive()) {
d <- sim(m,1e3)
require(survival)
(cc <- coxph(Surv(time,status)~v+strata(x,z),data=d))
plot(survfit(cc) ,col=1:4,mark.time=FALSE)
}
##################################################
### Categorical predictor
##################################################
m <- lvm()
## categorical(m,K=3) <- "v"
categorical(m,labels=c("A","B","C")) <- "v"
regression(m,additive=FALSE) <- y~v
## Not run:
plot(y~v,sim(m,1000,p=c("y~v:2"=3)))
## End(Not run)
m <- lvm()
categorical(m,labels=c("A","B","C"),p=c(0.5,0.3)) <- "v"
regression(m,additive=FALSE,beta=c(0,2,-1)) <- y~v
## equivalent to:
## regression(m,y~v,additive=FALSE) <- c(0,2,-1)
regression(m,additive=FALSE,beta=c(0,4,-1)) <- z~v
table(sim(m,1e4)$v)
glm(y~v, data=sim(m,1e4))
glm(y~v, data=sim(m,1e4,p=c("y~v:1"=3)))
transform(m,v2~v) <- function(x) x=='A'
sim(m,10)
##################################################
### Pre-calculate object
##################################################
m <- lvm(y~x)
m2 <- sim(m,'y~x'=2)
sim(m,10,'y~x'=2)
sim(m2,10) ## Faster
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.