rjb.test | R Documentation |
The robust and classical Jarque–Bera tests of normality.
rjb.test(
x,
option = c("RJB", "JB"),
crit.values = c("chisq.approximation", "empirical"),
N = 0
)
x |
a numeric vector of data values. |
option |
the choice of whether to perform the robust test, |
crit.values |
a character string specifying how the critical values should be obtained: approximated by the Chi-square distribution (default) or empirically. |
N |
number of Monte Carlo simulations for the empirical critical values. |
The test is based on a joint statistic using skewness and kurtosis coefficients. The Robust Jarque–Bera (RJB) is the robust version of the Jarque–Bera (JB) test of normality. The RJB (default option) utilizes the robust standard deviation (specifically, the Average Absolute Deviation from the Median; MAAD) to estimate sample kurtosis and skewness. For more details, see \insertCiteGel_Gastwirth_2008;textuallawstat. Users can also choose to perform the classical Jarque–Bera test \insertCiteJarque_Bera_1980lawstat.
A list of class "htest"
with the following components:
statistic |
the value of the test statistic. |
parameter |
the degrees of freedom. |
p.value |
the |
method |
type of test was performed. |
data.name |
a character string giving the name of the data. |
Modified from jarque.bera.test
(tseries
package).
W. Wallace Hui, Yulia R. Gel, Joseph L. Gastwirth, Weiwen Miao
sj.test
, rqq
,
jarque.bera.test
## Normally distributed data
x = rnorm(100)
rjb.test(x)
## Using zuni data
data(zuni)
rjb.test(zuni[, "Revenue"])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.