lccPlot: Plot Fitted Curves from an 'lcc' Object.

Description Usage Arguments Author(s) References See Also Examples

View source: R/plotmethod_lcc.R

Description

A plot of predictions versus the time covariate is generated. Predicted values are joined by lines while sampled observations are represented by circles. If the argument components=TRUE is considered in the lcc object, single plots of each statistics are returned on differents pages.

Usage

1
lccPlot(obj, type, control, ...)

Arguments

obj

an object inheriting from class "lcc", representing a fitted lcc model.

type

character string. If type = "lcc", the output is the LCC plot; if type = "lpc", the output is the LPC plot; and if type = "la" the output is the LA plot. Types "lpc" and "la" are available only if components = TRUE.

control

a list of control values or character strings returned by the function plotControl. Defaults to an empty list. The list may contain the following components:

shape:

draw points considering a shape parameter. Possible shape values are the numbers 0 to 25, and 32 to 127; see aes_linetype_size_shape. Default is 1.

colour:

specification for lines color. Default is "black".

size:

specification for lines size. Should be specified with a numerical value (in millimetres); see aes_linetype_size_shape. Default is 0.5.

xlab:

title for the x axis. Default is "Time".

ylab:

title for the y axis. Default is "LCC", "LPC", or "LA"

scale_y_continuous:

numeric vector of length two providing limits of the scale. Default is c(0,1).

all.plot:

viewport functions for the lcc class. If TRUE, the default, returns an object created by the viewport function with multiple plots on a single page. If FALSE returns a single ggplot object by different pages using the marrangeGrob function.

...

arguments to be passed to facet_wrap function

Author(s)

Thiago de Paula Oliveira, thiago.paula.oliveira@usp.br

References

Lin, L. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics, 45, n. 1, 255-268, 1989.

Oliveira, T.P.; Hinde, J.; Zocchi S.S. Longitudinal Concordance Correlation Function Based on Variance Components: An Application in Fruit Color Analysis. Journal of Agricultural, Biological, and Environmental Statistics, v. 23, n. 2, 233–254, 2018.

See Also

lcc.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
data(hue)
## Second degree polynomial model with random intercept, slope and
## quadratic term
fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean",
         method = "Method", time = "Time", qf = 2, qr = 2,
         components=TRUE)
lccPlot(fm1, type="lcc")
lccPlot(fm1, type="lpc")
lccPlot(fm1, type="la")

## Using themes of ggplot2 package
lccPlot(fm1, type = "lpc")+
 ylim(0,1) +
 geom_hline(yintercept = 1, linetype = "dashed") +
 scale_x_continuous(breaks = seq(1,max(hue$Time),2))+
 theme_bw() +
 theme(legend.position = "none", aspect.ratio = 1,
  axis.line.x = element_line(color="black", size = 0.5),
  axis.line.y = element_line(color="black", size = 0.5),
  axis.title.x = element_text(size=14),
  axis.title.y = element_text(size=14),
  axis.text.x = element_text(size = 14, face = "plain"),
  axis.text.y = element_text(size = 14, face = "plain"))

## Using the key (+) to constructing sophisticated graphics
lccPlot(fm1, type="lcc") +
 scale_y_continuous(limits=c(-1, 1)) +
 labs(title="My title",
 y ="Longitudinal Concordance Correlation",
 x = "Time (Days)")

## Runing all.plots = FALSE and saving plots as pdf
## Not run: 
data(simulated_hue_block)
attach(simulated_hue_block)
fm2<-lcc(data = simulated_hue_block, subject = "Fruit",
         resp = "Hue", method = "Method",time = "Time",
         qf = 2, qr = 1, components = TRUE, covar = c("Block"),
         time_lcc = list(n=50, from=min(Time), to=max(Time)))
ggsave("myplots.pdf",
       lccPlot(fm2, type="lcc", scales = "free"))

## End(Not run)

lcc documentation built on Feb. 26, 2021, 5:07 p.m.

Related to lccPlot in lcc...