Nothing

knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )

```
library(lcsm)
```

This function is work in progress and can only plot univariate and bivariate LCS models that were specified with `fit_uni_lcsm()`

or `fit_bi_lcsm()`

.
Modified LCS models will probably return errors as the layout matrix that gets created by this plot function only supports the specifications that can be modelled with this package.
The input arguments for plotting a simplified path dioagram are:

- the estimated lavaan object
`lavaan_object`

, - the
`lavaan_syntax`

and , `lcsm`

indicating whether the LCS model is "univariate" or "bivariate"

Optional arguments can be used to change the look of the plot, for example:

`lcsm_colours`

can be used to highlight the different parts of the latent change score model- white: observed scores
- green: latent true scores
- blue: latent change scores
- yellow: latent change scores

Further arguments can be passed on to `semPlot::semPaths()`

, for example:

`what`

,**"path"**to show unweighted gray edges,**"par"**to show parameter estimates as weighted (green/red) edges`whatLabels`

,**"label"**to show edege names as label or**"est"**for parameter estimates,**"hide"**to hide edge labels

# Fit bivariate lcsm and save the results uni_lavaan_results <- fit_uni_lcsm(data = data_uni_lcsm, var = c("x1", "x2", "x3", "x4", "x5"), model = list(alpha_constant = TRUE, beta = FALSE, phi = TRUE) ) # Save the lavaan syntax that is used to create the layout matrix for semPlot uni_lavaan_syntax <- fit_uni_lcsm(data = data_uni_lcsm, var = c("x1", "x2", "x3", "x4", "x5"), model = list(alpha_constant = TRUE, beta = FALSE, phi = TRUE), return_lavaan_syntax = TRUE) # Plot the results plot_lcsm(lavaan_object = uni_lavaan_results, lavaan_syntax = uni_lavaan_syntax, edge.label.cex = .9, lcsm_colours = TRUE, lcsm = "univariate")

# Fit bivariate lcsm and save the results bi_lavaan_results <- fit_bi_lcsm(data = data_bi_lcsm, var_x = c("x1", "x2", "x3", "x4", "x5"), var_y = c("y1", "y2", "y3", "y4", "y5"), model_x = list(alpha_constant = TRUE, beta = TRUE, phi = FALSE), model_y = list(alpha_constant = TRUE, beta = TRUE, phi = TRUE), coupling = list(delta_lag_xy = TRUE, xi_lag_yx = TRUE)) # Save the lavaan syntax that is used to create the layout matrix for semPlot bi_lavaan_syntax <- fit_bi_lcsm(data = data_bi_lcsm, var_x = c("x1", "x2", "x3", "x4", "x5"), var_y = c("y1", "y2", "y3", "y4", "y5"), model_x = list(alpha_constant = TRUE, beta = TRUE, phi = FALSE), model_y = list(alpha_constant = TRUE, beta = TRUE, phi = TRUE), coupling = list(delta_lag_xy = TRUE, xi_lag_yx = TRUE), return_lavaan_syntax = TRUE) # Plot the results plot_lcsm(lavaan_object = bi_lavaan_results, lavaan_syntax = bi_lavaan_syntax, lcsm_colours = TRUE, whatLabels = "hide", lcsm = "bivariate")

**Any scripts or data that you put into this service are public.**

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.