knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library("reticulate") module <- py_available() && reticulate::py_module_available("leidenalg") && reticulate::py_module_available("igraph")
This package allows calling the Leiden algorithm for clustering on an igraph object from R. See the Python and Java implementations for more details:
https://github.com/CWTSLeiden/networkanalysis
https://github.com/vtraag/leidenalg
This package requires the 'leidenalg' and 'igraph' modules for python (2) to be installed on your system. For example:
pip install leidenalg igraph
If you do not have root access, you can use pip install --user
or pip install --prefix
to install these in your user directory (which you have write permissions for) and ensure that this directory is in your PATH so that Python can find it.
The 'devtools' package will be used to install 'leiden' and the dependancies (igraph and reticulate). To install the development version:
if (!requireNamespace("devtools")) install.packages("devtools") devtools::install_github("TomKellyGenetics/leiden")
The current release on CRAN can be installed with:
install.packages("leiden")
install.packages("leiden", quiet = TRUE, repos = 1) devtools::install_github("TomKellyGenetics/leiden", ref = "dev")
library("leiden")
First set up a compatible adjacency matrix:
adjacency_matrix <- rbind(cbind(matrix(round(rbinom(400, 1, 0.8)), 20, 20), matrix(round(rbinom(400, 1, 0.3)), 20, 20), matrix(round(rbinom(400, 1, 0.1)), 20, 20)), cbind(matrix(round(rbinom(400, 1, 0.3)), 20, 20), matrix(round(rbinom(400, 1, 0.8)), 20, 20), matrix(round(rbinom(400, 1, 0.2)), 20, 20)), cbind(matrix(round(rbinom(400, 1, 0.3)), 20, 20), matrix(round(rbinom(400, 1, 0.1)), 20, 20), matrix(round(rbinom(400, 1, 0.9)), 20, 20))) str(adjacency_matrix) dim(adjacency_matrix )
An adjacency matrix is any binary matrix representing links between nodes (column and row names). It is a directed graph if the adjacency matrix is not symmetric.
library("igraph") rownames(adjacency_matrix) <- 1:60 colnames(adjacency_matrix) <- 1:60 graph_object <- graph_from_adjacency_matrix(adjacency_matrix, mode = "directed") graph_object
This represents the following graph structure.
plot(graph_object, vertex.color = "grey75")
This can be a shared nearest neighbours matrix derived from a graph object.
library("igraph") adjacency_matrix <- igraph::as_adjacency_matrix(graph_object)
Then the Leiden algorithm can be run on the adjacency matrix.
partition <- c(rep(1, 20), rep(2, 20), rep(3, 20))
partition <- leiden(adjacency_matrix)
table(partition)
Here we can see partitions in the plotted results. The nodes that are more interconnected have been partitioned into separate clusters.
library("RColorBrewer") node.cols <- brewer.pal(max(c(3, partition)),"Pastel1")[partition] plot(graph_object, vertex.color = node.cols)
Arguments can be passed to the leidenalg implementation in Python:
#run with defaults partition <- leiden(adjacency_matrix) #run with ModularityVertexPartition" partition <- leiden(adjacency_matrix, partition_type = "ModularityVertexPartition") #run with resolution parameter partition <- leiden(adjacency_matrix, resolution_parameter = 0.95)
In particular, the resolution parameter can fine-tune the number of clusters to be detected.
partition <- leiden(adjacency_matrix, resolution_parameter = 0.5) node.cols <- brewer.pal(max(c(3, partition)),"Pastel1")[partition] plot(graph_object, vertex.color = node.cols)
partition <- leiden(adjacency_matrix, resolution_parameter = 1.8) node.cols <- brewer.pal(max(c(3, partition)),"Pastel1")[partition] plot(graph_object, vertex.color = node.cols)
partition <- leiden(adjacency_matrix, max_comm_size = 12) node.cols <- brewer.pal(min(c(9, partition)),"Pastel1")[partition] plot(graph_object, vertex.color = node.cols)
Weights for edges an also be passed to the leiden algorithm either as a separate vector or weights or a weighted adjacency matrix.
#generate example weights weights <- sample(1:10, sum(adjacency_matrix!=0), replace=TRUE) partition <- leiden(adjacency_matrix, weights = weights) table(partition)
#generate example weighted matrix adjacency_matrix[adjacency_matrix == 1] <- weights partition <- leiden(adjacency_matrix) table(partition)
See the documentation on the leidenalg Python module for more information: https://leidenalg.readthedocs.io/en/latest/reference.html
To use Leiden with the Seurat pipeline for a Seurat Object object
that has an SNN computed (for example with Seurat::FindClusters
with save.SNN = TRUE
). This will compute the Leiden clusters and add them to the Seurat Object Class.
adjacency_matrix <- as.matrix(object@snn) membership <- leiden(adjacency_matrix) object@ident <- as.factor(membership) names(object@ident) <- rownames(object@meta.data) object@meta.data$ident <- as.factor(membership)
Note that this code is designed for Seurat version 2 releases.
Note that the object for Seurat version 3 has changed. For example an SNN can be generated:
library("Seurat") FindClusters(pbmc_small) membership <- leiden(pbmc_small@graphs$RNA_snn) table(membership)
For Seurat version 3 objects, the Leiden algorithm has been implemented in the Seurat version 3 package with Seurat::FindClusters
and algorithm = "leiden"
). See the documentation for these functions.
FindClusters(pbmc_small, algorithm = "leiden") table(pbmc_small@active.ident)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.