addCappedL1: addCappedL1

View source: R/mixedPenalty.R

addCappedL1R Documentation

addCappedL1

Description

Implements cappedL1 regularization for structural equation models. The penalty function is given by:

p( x_j) = \lambda \min(| x_j|, \theta)

where \theta > 0. The cappedL1 penalty is identical to the lasso for parameters which are below \theta and identical to a constant for parameters above \theta. As adding a constant to the fitting function will not change its minimum, larger parameters can stay unregularized while smaller ones are set to zero.

Usage

addCappedL1(mixedPenalty, regularized, lambdas, thetas)

Arguments

mixedPenalty

model of class mixedPenalty created with the mixedPenalty function (see ?mixedPenalty)

regularized

vector with names of parameters which are to be regularized. If you are unsure what these parameters are called, use getLavaanParameters(model) with your lavaan model object

lambdas

numeric vector: values for the tuning parameter lambda

thetas

parameters whose absolute value is above this threshold will be penalized with a constant (theta)

Details

Identical to regsem, models are specified using lavaan. Currently, most standard SEM are supported. lessSEM also provides full information maximum likelihood for missing data. To use this functionality, fit your lavaan model with the argument sem(..., missing = 'ml'). lessSEM will then automatically switch to full information maximum likelihood as well.

CappedL1 regularization:

  • Zhang, T. (2010). Analysis of Multi-stage Convex Relaxation for Sparse Regularization. Journal of Machine Learning Research, 11, 1081–1107.

Regularized SEM

  • Huang, P.-H., Chen, H., & Weng, L.-J. (2017). A Penalized Likelihood Method for Structural Equation Modeling. Psychometrika, 82(2), 329–354. https://doi.org/10.1007/s11336-017-9566-9

  • Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized Structural Equation Modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 555–566. https://doi.org/10.1080/10705511.2016.1154793

For more details on ISTA, see:

  • Beck, A., & Teboulle, M. (2009). A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1), 183–202. https://doi.org/10.1137/080716542

  • Gong, P., Zhang, C., Lu, Z., Huang, J., & Ye, J. (2013). A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems. Proceedings of the 30th International Conference on Machine Learning, 28(2)(2), 37–45.

  • Parikh, N., & Boyd, S. (2013). Proximal Algorithms. Foundations and Trends in Optimization, 1(3), 123–231.

Value

Model of class mixedPenalty. Use the fit() - function to fit the model

Examples

library(lessSEM)

# Identical to regsem, lessSEM builds on the lavaan
# package for model specification. The first step
# therefore is to implement the model in lavaan.

dataset <- simulateExampleData()

lavaanSyntax <- "
f =~ l1*y1 + l2*y2 + l3*y3 + l4*y4 + l5*y5 + 
     l6*y6 + l7*y7 + l8*y8 + l9*y9 + l10*y10 + 
     l11*y11 + l12*y12 + l13*y13 + l14*y14 + l15*y15
f ~~ 1*f
"

lavaanModel <- lavaan::sem(lavaanSyntax,
                           data = dataset,
                           meanstructure = TRUE,
                           std.lv = TRUE)

# We can add mixed penalties as follows:

regularized <- lavaanModel |>
  # create template for regularized model with mixed penalty:
  mixedPenalty() |>
  # add penalty on loadings l6 - l10:
  addCappedL1(regularized = paste0("l", 11:15), 
          lambdas = seq(0,1,.1),
          thetas = 2.3) |>
  # fit the model:
  fit()

lessSEM documentation built on May 29, 2024, 7:10 a.m.