knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE)
To attach the package in R studio
library(lfproQC)
To find the best combination of normalization and imputation method for the dataset
yeast <- best_combination(yeast_data, yeast_groups, data_type = "Protein")
PCV values result
yeast$`PCV Result`
PEV values result
yeast$`PEV Result`
PMAD values result
yeast$`PMAD Result`
Best combinations
yeast$`Best combinations`
1. By boxplot
Boxplot_data(yeast$`rlr_knn_data`)
2. By density plot
Densityplot_data(yeast$`rlr_knn_data`)
3. By correlation heatmap
Corrplot_data(yeast$`rlr_knn_data`)
4. By MDS plot
MDSplot_data(yeast$`rlr_knn_data`)
5. By QQ-plot
QQplot_data(yeast$`rlr_knn_data`)
To Calculate the top-table values
top_table_yeast <- top_table_fn(yeast$`rlr_knn_data`, yeast_groups, 2, 1)
To visualize the different kinds of differentially abundant proteins, such as up-regulated, down-regulated, significant and non-significant proteins
By MA plot
de_yeast_MA <- MAplot_DE_fn(top_table_yeast,-1,1,0.05) de_yeast_MA$`MA Plot`
By volcano plot
de_yeast_volcano <- volcanoplot_DE_fn (top_table_yeast,-1,1,0.05) de_yeast_volcano$`Volcano Plot`
Both of the above plots give same result.
To obtain the overall differentially abundant proteins result
de_yeast_MA$`Result `
To find the up-regulated proteins
de_yeast_MA$`Up-regulated`
To find the down-regulated proteins
de_yeast_MA$`Down-regulated`
To find the other significant proteins
de_yeast_MA$`Significant`
To find the non-significant proteins
de_yeast_MA$`Non-significant`
The overall workflow of working with the 'lfproQC' package
library(knitr)
knitr::include_graphics("images/flow1.png", dpi = 72)
Session Information
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.