View source: R/HelperFunctions.R
tune_Lambda | R Documentation |
Optimizes smoothing spline and ridge regression penalties by minimizing GCV criterion. Uses BFGS optimization with analytical gradients or finite differences.
tune_Lambda(
y,
X,
X_gram,
smoothing_spline_penalty,
A,
K,
nc,
nr,
opt,
use_custom_bfgs,
C,
colnm_expansions,
wiggle_penalty,
flat_ridge_penalty,
invsoftplus_initial_wiggle,
invsoftplus_initial_flat,
unique_penalty_per_predictor,
unique_penalty_per_partition,
invsoftplus_penalty_vec,
meta_penalty,
family,
unconstrained_fit_fxn,
keep_weighted_Lambda,
iterate,
qp_score_function,
quadprog,
qp_Amat,
qp_bvec,
qp_meq,
tol,
sd_y,
delta,
constraint_value_vectors,
parallel,
parallel_eigen,
parallel_trace,
parallel_aga,
parallel_matmult,
parallel_unconstrained,
cl,
chunk_size,
num_chunks,
rem_chunks,
shared_env,
custom_penalty_mat,
order_list,
glm_weight_function,
shur_correction_function,
need_dispersion_for_estimation,
dispersion_function,
observation_weights,
homogenous_weights,
blockfit,
just_linear_without_interactions,
Vhalf,
VhalfInv,
verbose,
include_warnings,
...
)
y |
List; response vectors by partition |
X |
List; design matrices by partition |
X_gram |
List; Gram matrices by partition |
smoothing_spline_penalty |
Matrix; integrated squared second derivative penalty |
A |
Matrix; smoothness constraints at knots |
K |
Integer; number of interior knots in 1-D, number of partitions - 1 in higher dimensions |
nc |
Integer; columns per partition |
nr |
Integer; total sample size |
opt |
Logical; TRUE to optimize penalties, FALSE to use initial values |
use_custom_bfgs |
Logical; TRUE for analytic gradient BFGS as natively implemented, FALSE for finite differences as implemented by |
wiggle_penalty , flat_ridge_penalty |
Initial penalty values |
invsoftplus_initial_wiggle , invsoftplus_initial_flat |
Initial grid search values (log scale) |
unique_penalty_per_predictor , unique_penalty_per_partition |
Logical; allow predictor/partition-specific penalties |
invsoftplus_penalty_vec |
Initial values for predictor/partition penalties (log scale) |
meta_penalty |
The "meta" ridge penalty, a regularization for predictor/partition penalties to pull them on log-scale towards 0 (1 on raw scale) |
family |
GLM family with optional custom tuning loss |
keep_weighted_Lambda , iterate |
Logical controlling GLM fitting |
qp_score_function , quadprog , qp_Amat , qp_bvec , qp_meq |
Quadratic programming parameters (see arguments of |
tol |
Numeric; convergence tolerance |
sd_y , delta |
Response standardization parameters |
constraint_value_vectors |
List; constraint values |
parallel |
Logical; enable parallel computation |
cl , chunk_size , num_chunks , rem_chunks |
Parallel computation parameters |
custom_penalty_mat |
Optional custom penalty matrix |
order_list |
List; observation ordering by partition |
glm_weight_function , shur_correction_function |
Functions for GLM weights and corrections |
need_dispersion_for_estimation , dispersion_function |
Control dispersion estimation |
observation_weights |
Optional observation weights |
homogenous_weights |
Logical; TRUE if all weights equal |
blockfit |
Logical; when TRUE, block-fitting (not per-partition fitting) approach is used, analogous to quadratic programming. |
just_linear_without_interactions |
Numeric; vector of columns of input predictor matrix that correspond to non-spline effects without interactions, used for block-fitting. |
Vhalf , VhalfInv |
Square root and inverse square root correlation structures for fitting GEEs. |
verbose |
Logical; print progress |
include_warnings |
Logical; print warnings/try-errors |
... |
Additional arguments passed to fitting functions |
Uses BFGS optimization to minimize GCV criterion for penalty selection. Supports analytical gradients for efficiency with standard GLM families. Can optimize unique penalties per predictor/partition. Handles custom loss functions and GLM weights. Parallel computation available for large problems.
List containing:
Lambda - Final combined penalty matrix
flat_ridge_penalty - Optimized ridge penalty
wiggle_penalty - Optimized smoothing penalty
other_penalties - Optimized predictor/partition penalties
L_predictor_list - Predictor-specific penalty matrices
L_partition_list - Partition-specific penalty matrices
optim
for Hessian-free optimization
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.