Nothing
#############################################################################
# Copyright (c) 2013-2020 Alexandra Kuznetsova, Per Bruun Brockhoff, and
# Rune Haubo Bojesen Christensen
#
# This file is part of the lmerTest package for R (*lmerTest*)
#
# *lmerTest* is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# *lmerTest* is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# <https://www.r-project.org/Licenses/> and/or
# <http://www.gnu.org/licenses/>.
#############################################################################
#
# lmerTest.R - package documentation page
#' lmerTest: Tests in Linear Mixed Effects Models
#'
#' The \pkg{lmerTest} package provides p-values in type I, II or III
#' \code{anova} and \code{summary}
#' tables for linear mixed models (\code{\link{lmer}} model fits cf. \pkg{lme4})
#' via Satterthwaite's degrees of freedom method; a Kenward-Roger method is also
#' available via the \pkg{pbkrtest} package.
#' Model selection and assessment methods include \code{\link{step}},
#' \code{\link{drop1}}, anova-like tables for random effects (\code{\link{ranova}}),
#' least-square means (LS-means; \code{\link{ls_means}})
#' and tests of linear contrasts of fixed effects (\code{\link{contest}}).
#'
#'
#' @section Key Functions and Methods:
#'
#' \describe{
#' \item{lmer}{overloads \code{lme4::lmer} and produced an object of class
#' \code{lmerModLmerTest} which inherits from \code{lmerMod}. In addition to
#' computing the model (using \code{lme4::lmer}), \code{lmerTest::lmer}
#' computes a couple of components needed for the evaluation of Satterthwaite's
#' denominator degrees of freedom.}
#' \item{anova}{anova method for \code{\link{lmer}} model fits produces
#' type I, II, and III anova tables for fixed-effect terms with
#' Satterthwaite and Kenward-Roger methods for denominator degrees of freedom
#' for F-tests.}
#' \item{summary}{summary method for \code{\link{lmer}} model fits adds
#' denominator degrees of freedom and p-values to the coefficient table.}
#' \item{ranova}{anova-like table of random effects via likelihood ratio tests
#' with methods for both \code{lmerMod} and \code{lmerModLmerTest} objects.
#' \code{ranova} can either test reduction of random-effect terms to simpler
#' structures or it can test removal of entire random-effect terms.}
#' \item{drop1}{F-tests of fixed-effect terms using Satterthwaite or
#' Kenward-Roger methods for denominator degrees of freedom. These 'single term
#' deletion' tables are useful for model selection and tests of marginal terms.
#' Compared to the likelihood ratio tests of \code{lme4::drop1} the F-tests and
#' p-values of \code{lmerTest::drop1} are more accurate and considerably faster
#' since no additional model fitting is required.}
#' \item{contest}{tests of contrasts, i.e. tests of linear functions of the
#' fixed-effect coefficients. A user-friendly interface for tests of contrasts
#' with outputs either as a summary-like table of t-tests or an anova-like table
#' of F-tests (or a list of either). Contrasts can optionally be tested for
#' estimability. Contrasts are allowed to be rank-deficient as the rank is
#' automatically detected and appropriate adjustments made. Methods for
#' \code{lmerModLmerTest} as well as \code{lmerMod} objects -- the latter avoids
#' the Satterthwaite specific computations when the Kenward-Roger method is used.}
#' \item{show_test}{a function which operates on anova tables and LS-means tables
#' makes it possible to see exactly which
#' functions of the coefficients are being tested. This is helpful when
#' differences between type I, II and III anova tables are being considered and
#' discussed.}
#' \item{ls_means}{computes the so-called least-squares means (classical Yates
#' contrasts) as well as pairwise differences of these.}
#' \item{step}{performs automatic backward model selection of fixed and random
#' parts of the linear mixed model.}
#' \item{as_lmerModLmerTest}{an explicit coerce function from class
#' \code{lmerMod} to \code{lmerModLmerTest}.}
#' }
#'
#' @section Details:
#' The computational approach is to let \code{lmerTest::lmer} compute the
#' Hessian and derivatives needed for evaluation of degrees of freedom and
#' t- and F-tests and to store these in the model object. The
#' Hessian and derivatives are therefore computed only once per model fit
#' and reused with each call to \code{anova}, \code{summary}, etc. Evaluation of
#' t and F-tests does not involve model re-fitting.
#'
#' \code{lmerTest::lmer} roughly amounts to calling \code{lme4::lmer} followed by
#' \code{lmerTest::as_lmerModLmerTest}, so for computationally intensive model
#' fits it can make sense to use \code{lme4::lmer} rather than \code{lmerTest::lmer}
#' if computational time is an issue and summary tables and anova tables will
#' not be needed.
#'
#' @author Alexandra Kuznetsova, Per Bruun Brockhoff, Rune Haubo Bojesen Christensen
#'
#' @references
#'
#' Alexandra Kuznetsova, Per B. Brockhoff and Rune H. B. Christensen (2017)
#' lmerTest Package: Tests in Linear Mixed Effects Models.
#' \emph{Journal of Statistical Software}, 82(13), 1--26. doi:10.18637/jss.v082.i13
#'
#'
#' @docType package
#' @name lmerTest-package
#' @aliases lmerTest
#'
#' @examples
#'
#' ## load lmerTest package
#' library(lmerTest)
#'
#' ## Fit linear mixed model to the ham data:
#' fm <- lmer(Informed.liking ~ Gender + Information * Product + (1 | Consumer) +
#' (1 | Consumer:Product), data=ham)
#'
#' ## Summary including coefficient table with p-values for t-statistics using
#' ## Satterthwaite's method for denominator degrees of freedom:
#' summary(fm)
#'
#' ## Type III anova table with p-values for F-tests based on Satterthwaite's
#' ## method:
#' (aov <- anova(fm))
#'
#' ## Inspect the contrast matrix for the Type III test of Product:
#' show_tests(aov, fractions = TRUE)$Product
#'
#' ## Choose type II anova table with Kenward-Roger method for the F-test:
#' \dontrun{
#' if(requireNamespace("pbkrtest", quietly = TRUE))
#' anova(fm, type=2, ddf="Kenward-Roger")
#' }
#'
#' ## Anova-like table of random-effect terms using likelihood ratio tests:
#' ranova(fm)
#'
#' ## F-tests of 'single term deletions' for all marginal terms:
#' drop1(fm)
#'
#' ## Least-Square means and pairwise differences:
#' (lsm <- ls_means(fm))
#' ls_means(fm, which = "Product", pairwise = TRUE)
#'
#' ## ls_means also have plot and as.data.frame methods:
#' \dontrun{
#' plot(lsm, which=c("Product", "Information"))
#' as.data.frame(lsm)
#' ## Inspect the LS-means contrasts:
#' show_tests(lsm, fractions=TRUE)$Product
#' }
#'
#' ## Contrast test (contest) using a custom contrast:
#' ## Here we make the 2-df joint test of the main effects of Gender and Information
#' (L <- diag(length(fixef(fm)))[2:3, ])
#' contest(fm, L = L)
#'
#' ## backward elimination of non-significant effects:
#' step_result <- step(fm)
#'
#' ## Elimination tables for random- and fixed-effect terms:
#' step_result
#'
#' # Extract the model that step found:
#' final_model <- get_model(step_result)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.