| cdfexp | R Documentation |
This function computes the cumulative probability or nonexceedance probability of the Exponential distribution given parameters (\xi and \alpha computed by parexp. The cumulative distribution function is
F(x) = 1 - \exp(Y)\mbox{,}
where Y is
\frac{-(x - \xi)}{\alpha}\mbox{,}
where F(x) is the nonexceedance probability for the quantile x,
\xi is a location parameter, and \alpha is a scale parameter.
cdfexp(x, para)
x |
A real value vector. |
para |
The parameters from |
Nonexceedance probability (F) for x.
W.H. Asquith
Hosking, J.R.M., 1990, L-moments—Analysis and estimation of distributions using linear combinations of order statistics: Journal of the Royal Statistical Society, Series B, v. 52, p. 105–124.
Hosking, J.R.M., 1996, FORTRAN routines for use with the method of L-moments: Version 3, IBM Research Report RC20525, T.J. Watson Research Center, Yorktown Heights, New York.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
pdfexp, quaexp, lmomexp, parexp
lmr <- lmoms(c(123,34,4,654,37,78))
cdfexp(50,parexp(lmr))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.