| cdfsmd | R Documentation |
This function computes the cumulative probability or nonexceedance probability of the Singh–Maddala (Burr Type XII) distribution given parameters (a, b, and q) of the distribution computed by parsmd. The cumulative distribution function is
F(x) = 1 - \biggl(1 + \bigl[ (x - \xi) / a \bigr]^b \biggl)^{-q}\mbox{,}
where F(x) is the nonexceedance probability for quantile x with 0 \le x \le \infty, \xi is a location parameter, a is a scale parameter (a > 0), b is a shape parameter (b > 0), and q is another shape parameter (q > 0).
cdfsmd(x, para)
x |
A real value vector. |
para |
The parameters from |
Nonexceedance probability (F) for x.
W.H. Asquith
Kumar, D., 2017, The Singh–Maddala distribution—Properties and estimation: International Journal of System Assurance Engineering and Management, v. 8, no. S2, 15 p., \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s13198-017-0600-1")}.
Shahzad, M.N., and Zahid, A., 2013, Parameter estimation of Singh Maddala distribution by moments: International Journal of Advanced Statistics and Probability, v. 1, no. 3, pp. 121–131, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.14419/ijasp.v1i3.1206")}.
pdfsmd, quasmd, lmomsmd, parsmd
# The SMD approximating the normal and use x=0
tau4_of_normal <- 30 * pi^-1 * atan(sqrt(2)) - 9 # from theory
cdfsmd(0, parsmd( vec2lmom( c( -pi, pi, 0, tau4_of_normal ) ) ) ) # 0.7138779
pnorm( 0, mean=-pi, sd=pi*sqrt(pi)) # 0.7136874
## Not run:
t3 <- 0.6
t4 <- (t3 * (1 + 5 * t3))/(5 + t3) # L-kurtosis of GPA from lmrdia()
paraA <- parsmd( vec2lmom( c( -1000, 200, t3, t4-0.02 ) ) )
paraB <- parsmd( vec2lmom( c( -1000, 200, t3, t4 ) ) )
paraC <- parsmd( vec2lmom( c( -1000, 200, t3, t4+0.02 ) ) )
FF <- nonexceeds(); x <- quasmd(FF, paraA)
plot( x, prob2grv(cdfsmd(x, paraA)), col="red", type="l",
xlab="Quantile", ylab="Gumbel Reduced Variate, prob2grv()")
lines(x, prob2grv(cdfsmd(x, paraB)), col="green")
lines(x, prob2grv(cdfsmd(x, paraC)), col="blue" ) #
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.