cdfsmd | R Documentation |
This function computes the cumulative probability or nonexceedance probability of the Singh–Maddala (Burr Type XII) distribution given parameters (a
, b
, and q
) of the distribution computed by parsmd
. The cumulative distribution function is
F(x) = 1 - \biggl(1 + \bigl[ (x - \xi) / a \bigr]^b \biggl)^{-q}\mbox{,}
where F(x)
is the nonexceedance probability for quantile x
with 0 \le x \le \infty
, \xi
is a location parameter, a
is a scale parameter (a > 0
), b
is a shape parameter (b > 0
), and q
is another shape parameter (q > 0
).
cdfsmd(x, para)
x |
A real value vector. |
para |
The parameters from |
Nonexceedance probability (F
) for x
.
W.H. Asquith
Kumar, D., 2017, The Singh–Maddala distribution—Properties and estimation: International Journal of System Assurance Engineering and Management, v. 8, no. S2, 15 p., \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s13198-017-0600-1")}.
Shahzad, M.N., and Zahid, A., 2013, Parameter estimation of Singh Maddala distribution by moments: International Journal of Advanced Statistics and Probability, v. 1, no. 3, pp. 121–131, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.14419/ijasp.v1i3.1206")}.
pdfsmd
, quasmd
, lmomsmd
, parsmd
# The SMD approximating the normal and use x=0
tau4_of_normal <- 30 * pi^-1 * atan(sqrt(2)) - 9 # from theory
cdfsmd(0, parsmd( vec2lmom( c( -pi, pi, 0, tau4_of_normal ) ) ) ) # 0.7138779
pnorm( 0, mean=-pi, sd=pi*sqrt(pi)) # 0.7136874
## Not run:
t3 <- 0.6
t4 <- (t3 * (1 + 5 * t3))/(5 + t3) # L-kurtosis of GPA from lmrdia()
paraA <- parsmd( vec2lmom( c( -1000, 200, t3, t4-0.02 ) ) )
paraB <- parsmd( vec2lmom( c( -1000, 200, t3, t4 ) ) )
paraC <- parsmd( vec2lmom( c( -1000, 200, t3, t4+0.02 ) ) )
FF <- nonexceeds(); x <- quasmd(FF, paraA)
plot( x, prob2grv(cdfsmd(x, paraA)), col="red", type="l",
xlab="Quantile", ylab="Gumbel Reduced Variate, prob2grv()")
lines(x, prob2grv(cdfsmd(x, paraB)), col="green")
lines(x, prob2grv(cdfsmd(x, paraC)), col="blue" ) #
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.