pdfray: Probability Density Function of the Rayleigh Distribution

Description Usage Arguments Value Author(s) References See Also Examples

Description

This function computes the probability density of the Rayleigh distribution given parameters (ξ and α) computed by parray. The probability density function is

f(x) = \frac{x - ξ}{α^2}\,\exp\!≤ft(\frac{-(x - ξ)^2}{2α^2}\right)\mbox{,}

where f(x) is the nonexceedance probability for quantile x, ξ is a location parameter, and α is a scale parameter.

Usage

1
pdfray(x, para)

Arguments

x

A real value vector.

para

The parameters from parray or similar.

Value

Probability density (f) for x.

Author(s)

W.H. Asquith

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

cdfray, quaray, lmomray, parray

Examples

1
2
3
4
  lmr <- lmoms(c(123,34,4,654,37,78))
  ray <- parray(lmr)
  x <- quaray(0.5,ray)
  pdfray(x,ray)

lmomco documentation built on March 18, 2018, 1:45 p.m.