Nothing
knitr::opts_chunk$set( collapse = TRUE, message = FALSE, warning = FALSE, comment = "#>", eval = FALSE, include = TRUE )
This vignette shows a brief comparison of the survival_ln_mixture with other survival models, available through censored
.
We begin by loading the packages and preparing the data.
library(lnmixsurv) library(readr) require(censored) require(purrr) require(dplyr) require(ggplot2) set.seed(4) # Gerando dados data <- simulate_data(n = 6000, k = 3, mixture_components = 2, percentage_censored = 0.3)$data |> filter(t < 500) |> rename(x = cat, y = t) new_data <- data |> distinct(x) formula <- Surv(y, delta) ~ x
For comparison, lets also estimate the Kaplan-Meier survival function.
library(ggsurvfit) km <- survfit2(formula, data) surv_km <- tidy_survfit(km, type = "surv") |> select(.eval_time = time, .pred_survival = estimate, id = strata) |> tidyr::nest(.pred = c(.eval_time, .pred_survival))
The we build our parsnip
specifications and store them in a list.
ln_survival <- survival_reg(dist = "lognormal") |> set_engine("survival") ph_survival <- proportional_hazards() |> set_engine("survival") decision_tree <- decision_tree(cost_complexity = 0) |> set_engine("rpart") |> set_mode("censored regression") ln_mixture <- survival_reg() |> set_engine("survival_ln_mixture", iter = 4000, warmup = 2000, starting_seed = 10, em_iter = 450, mixture_components = 3) ln_mixture_em <- survival_reg() |> set_engine("survival_ln_mixture_em", iter = 250, starting_seed = 15, mixture_components = 3) specs <- list( ln_survival = ln_survival, ph_survival = ph_survival, ln_mixture = ln_mixture, decision_tree = decision_tree, ln_mixture_em = ln_mixture_em )
Finally, thanks to the great parsnip API, we can fit and predict all models at once.
set.seed(1) models <- map(specs, ~ fit(.x, formula, data)) pred_sob <- map(models, ~ predict(.x, new_data, type = "survival", eval_time = seq(500)))
The following plot compares each model with the Kaplan-Meier estimates of the survival function.
all_preds <- bind_rows(pred_sob, .id = "modelo") |> group_by(modelo) |> dplyr::mutate(id = new_data$x) |> ungroup() |> tidyr::unnest(cols = .pred) km_fit <- surv_km |> tidyr::unnest(cols = .pred) |> filter(.eval_time < 500) ggplot(aes(x = .eval_time, y = .pred_survival, col = id), data = all_preds) + theme_bw() + geom_line() + facet_wrap(~modelo) + geom_line(data = km_fit, linetype = "dashed")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.