Nothing
# #' Local excess lifetime model helper
# #'
# #' This function breaks down the likelihood contribution
# #' from the sample in intervals so that the total contribution
# #' of an observation is only counted once.
# #' @inheritParams hazard_elife
# #' @keywords internal
# # local_elife <- function(
# # breakpoints,
# # time,
# # time2,
# # event,
# # type = c("right",
# # "left",
# # "interval",
# # "interval2"),
# # ltrunc = NULL,
# # rtrunc = NULL,
# # thresh = 0,
# # arguments = NULL,
# # ...){
# # if(!is.null(arguments)){
# # call <- match.call(expand.dots = FALSE)
# # arguments <- check_arguments(func = local_elife, call = call, arguments = arguments)
# # return(do.call(local_elife, args = arguments))
# # }
# # type <- match.arg(type)
# # # Check entries
# # # Check model
# # # Check that the breakpoints
# # # lie within the range of the data
# # stopifnot(breakpoints > 0)
# # type <- match.arg(type)
# # if(type == "ltrc"){
# # # Lexis diagram: vertical slice
# # ab <- as.logical(I(time > lower)*I(time < upper))
# # #survive beyond age under consideration
# # datu <- dat[ab]
# # slowu <- pmax(lower, ltrunc[ab])
# # rcensor <- rcens[ab]
# # aboveupp <- datu > upper
# # if(length(aboveupp) > 0){
# # rcensor[aboveupp] <- TRUE
# # }
# # return(dat = datu, ltrunc = slowu, rcens = rcensor)
# # }
# # }
#
#
# #' Profile likelihood for hazard of generalized Pareto
# #'
# #' This function returns the profile likelihood-based 95% confidence intervals
# #' of the hazard of the generalized Pareto distribution with left-truncated and right-censored observations.
# #' @inheritParams gpd_cens
# #' @return point estimate along with 95% confidence interval
# # prof_gpd_hazard_confint <- function(dat, rightcens, slow, thresh){
# # confintmat <- matrix(0, nrow = length(thresh), ncol = 4)
# # th <- thresh
# # k <- 200L
# # datd <- dat/365.25
# # slowd <- slow/365.25
# # b <- 0
# # for(i in 1:length(thresh)){
# # b <- b + 1L
# # dth <- (th[i] - th[1])
# # low <- (th[i] - th[1])
# # upp <- ifelse(i > length(thresh)-1, 20, (th[i] - th[1])+1)
# # par_est <- optim(par = c(0.7,-0.3), fn = function(x){gpd_intcens(par = c(1/x[1]-x[2]*dth, x[2]),
# # dat = datd,
# # rightcens = rightcens, low = low, upp = upp,
# # slow = slowd, expo = FALSE)}, control = list(reltol = 1e-11))
# # hazard_mle <- par_est$par[1]
# # infoi <- numDeriv::hessian(x = par_est$par,
# # func = function(x){gpd_intcens(par = c(1/x[1]-x[2]*dth, x[2]),
# # dat = datd,
# # rightcens = rightcens, low = low, upp = upp,
# # slow = slowd, expo = FALSE)})
# # stderr.transfo <- sqrt(diag(solve(infoi)))[1]
# # if(stderr.transfo < 1e-6){
# # grid_psi <- par_est$par[1] + seq(-0.4, 0.4, length = k)
# # } else{
# # grid_psi <- par_est$par[1] + seq(-3*stderr.transfo, 4*stderr.transfo, length = k)
# # }
# # prof_vals <- xi_sigma_vals <- rep(0, k)
# # for (j in 1:k) {
# # opt_prof <- optimize(f = function(xi, haza, dat, slow, rightcens, dth){
# # gpd_intcens(par = c(1/haza-xi*dth, xi), dat = dat, rightcens = rightcens,
# # slow = slow, low = low, upp = upp)},
# # upper = min(1.1,1/(grid_psi[j]*dth)), lower = -1,
# # haza = grid_psi[j], dat = datd,
# # rightcens = rightcens, slow = slowd, dth = dth)
# # xi_sigma_vals[j] <- opt_prof$minimum
# # prof_vals[j] <- opt_prof$objective
# # }
# # infin <- which(prof_vals > 1e10-1)
# # if(length(infin) > 0){
# # prof_vals[infin] <- NA
# # }
# # prof <- structure(list(psi = grid_psi, psi.max = hazard_mle[1],
# # pll = -prof_vals, maxpll = -par_est$value, std.err = stderr.transfo),
# # class = "eprof")
# # confintmat[b,] <- c(confint_int(prof, parm = "profile",print = FALSE)[1:3], stderr.transfo)
# # }
# # return(confintmat)
# # }
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.