| specARIMA | R Documentation | 
Calculate the spectral density of a fractional ARMA process with standard normal innovations and self-similarity parameter H.
specARIMA(eta, p, q, m, spec.only = FALSE)
eta | 
 parameter vector   | 
p, q | 
 integers giving AR and MA order respectively.  | 
m | 
 sample size determining Fourier frequencies.  | 
spec.only | 
 
  | 
at the Fourier frequencies 2*\pi*j/n, (j=1,\dots,(n-1)),
cov(X(t),X(t+k)) = (sigma/(2*pi))*integral(exp(iuk)g(u)du).
— or rather – FIXME –
1. cov(X(t),X(t+k)) = integral[ exp(iuk)f(u)du ]
2. f() = theta1 * f*() ; spec = f*(), and integral[log(f*())] = 0
an object of class "spec" (by default, when spec.only is
false) see also spectrum) with components
freq | 
 the Fourier frequencies (in   | 
spec | 
 the scaled values spectral density   | 
theta1 | 
 the scale factor   | 
pq | 
 a vector of length two,   | 
eta | 
 a named vector   | 
method | 
 a character indicating the kind of model used.  | 
Jan Beran (principal) and Martin Maechler (fine tuning)
Beran (1994) and more, see ....
The spectral estimate for fractional Gaussian noise,
specFGN.
In general, spectrum and spec.ar.
 str(r.7  <- specARIMA(0.7, m = 256, p = 0, q = 0))
 str(r.5  <- specARIMA(eta = c(H = 0.5, phi=c(-.06, 0.42, -0.36), psi=0.776),
                       m = 256, p = 3, q = 1))
 plot(r.7)
 plot(r.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.