| gyr | R Documentation |
Relativistic addition of three velocities
gyr(u, v, x)
gyr.a(u, v, x)
gyrfun(u, v)
u, v, x |
Three-velocities, objects of class |
Function gyr(u,v,x) returns the three-vector
\mathrm{gyr}[u,v]x.
Function gyrfun(u,v) returns a function that returns a
three-vector; see examples.
The speed of light (1 by default) is not used directly by these
functions; set it with sol().
Function gyr() is slightly faster than gyr.a(), which is
included for pedagogical reasons.
Function gyr() is simply
add3(neg3(add3(u,v)),add3(u,add3(v,x)))
while function gyr.a() uses the slower but more transparent
idiom
-(u+v) + (u+(v+x))
Robin K. S. Hankin
Ungar 2006. “Thomas precession: a kinematic effect of the algebra of Einstein's velocity addition law. Comments on ‘Deriving relativistic momentum and energy: I. Three-dimensional case’”. European Journal of Physics, 27:L17-L20.
Sbitneva 2001. “Nonassociative geometry of special relativity”. International Journal of Theoretical Physics, volume 40, number 1, pages 359–362
u <- r3vel(10)
v <- r3vel(10)
w <- r3vel(10)
x <- as.3vel(c(0.4,0.1,-0.5))
y <- as.3vel(c(0.1,0.2,-0.7))
z <- as.3vel(c(0.2,0.3,-0.1))
gyr(u,v,x) # gyr[u,v]x
f <- gyrfun(u,v)
g <- gyrfun(v,u)
f(x)
f(r3vel(10))
f(g(x)) - x # zero, by eqn 9
g(f(x)) - x # zero, by eqn 9
(x+y) - f(y+x) # zero by eqn 10
(u+(v+w)) - ((u+v)+f(w)) # zero by eqn 11
# Following taken from Sbitneva 2001:
rbind(x+(y+(x+z)) , (x+(y+x))+z) # left Bol property
rbind((x+y)+(x+y) , x+(y+(y+x))) # left Bruck property
sol(299792458) # speed of light in SI
as.3vel(c(1000,3000,1000)) + as.3vel(c(1000,3000,1000))
## should be close to Galilean result
sol(1) # revert to default c=1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.