lpbwdensity | R Documentation |
lpbwdensity
implements the bandwidth selection methods for local
polynomial based density (and derivatives) estimation proposed and studied
in Cattaneo, Jansson and Ma (2020, 2023).
See Cattaneo, Jansson and Ma (2022) for more implementation details and illustrations.
Companion command: lpdensity
for estimation and robust bias-corrected inference.
Related Stata
and R
packages useful for nonparametric estimation and inference are
available at https://nppackages.github.io/.
lpbwdensity(
data,
grid = NULL,
p = NULL,
v = NULL,
kernel = c("triangular", "uniform", "epanechnikov"),
bwselect = c("mse-dpi", "imse-dpi", "mse-rot", "imse-rot"),
massPoints = TRUE,
stdVar = TRUE,
regularize = TRUE,
nLocalMin = NULL,
nUniqueMin = NULL,
Cweights = NULL,
Pweights = NULL
)
data |
Numeric vector or one dimensional matrix/data frame, the raw data. |
grid |
Numeric, specifies the grid of evaluation points. When set to default, grid points will be chosen as 0.05-0.95 percentiles of the data, with a step size of 0.05. |
p |
Nonnegative integer, specifies the order of the local polynomial used to construct point
estimates. (Default is |
v |
Nonnegative integer, specifies the derivative of the distribution function to be estimated. |
kernel |
String, specifies the kernel function, should be one of |
bwselect |
String, specifies the method for data-driven bandwidth selection. This option will be
ignored if |
massPoints |
|
stdVar |
|
regularize |
|
nLocalMin |
Nonnegative integer, specifies the minimum number of observations in each local neighborhood. This option
will be ignored if |
nUniqueMin |
Nonnegative integer, specifies the minimum number of unique observations in each local neighborhood. This option
will be ignored if |
Cweights |
Numeric vector, specifies the weights used
for counterfactual distribution construction. Should have the same length as the data.
This option will be ignored if |
Pweights |
Numeric vector, specifies the weights used
in sampling. Should have the same length as the data.
This option will be ignored if |
BW |
A matrix containing (1) |
opt |
A list containing options passed to the function. |
Matias D. Cattaneo, Princeton University. cattaneo@princeton.edu.
Michael Jansson, University of California Berkeley. mjansson@econ.berkeley.edu.
Xinwei Ma (maintainer), University of California San Diego. x1ma@ucsd.edu.
Cattaneo, M. D., M. Jansson, and X. Ma. 2020. Simple Local Polynomial Density Estimators. Journal of the American Statistical Association, 115(531): 1449-1455. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.2019.1635480")}
Cattaneo, M. D., M. Jansson, and X. Ma. 2022. lpdensity: Local Polynomial Density Estimation and Inference. Journal of Statistical Software, 101(2): 1–25. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v101.i02")}
Cattaneo, M. D., M. Jansson, and X. Ma. 2023. Local Regression Distribution Estimators. Journal of Econometrics, 240(2): 105074. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.jeconom.2021.01.006")}
Supported methods: coef.lpbwdensity
, print.lpbwdensity
, summary.lpbwdensity
.
# Generate a random sample
set.seed(42); X <- rnorm(2000)
# Construct bandwidth
bw1 <- lpbwdensity(X)
summary(bw1)
# Display bandwidths for a subset of grid points
summary(bw1, grid=bw1$BW[4:10, "grid"])
summary(bw1, gridIndex=4:10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.