R/lsirm12pl-package.R

#' lsirm12pl-package
#'
#' Analysis of dichotomous and continuous response data using latent factor by both 1PL LSIRM and 2PL LSIRM as described in Jeon et al. (2021) <doi:10.1007/s11336-021-09762-5>. It includes original 1PL LSIRM and 2PL LSIRM provided for binary response data and its extension for continuous response data. Bayesian model selection with spike-and-slab prior and method for dealing data with missing value under missing at random, missing completely at random are also supported. Various diagnostic plots are available to inspect the latent space and summary of estimated parameters.
#'
#' @name lsirm12pl
#' @importFrom Rcpp evalCpp
#' @importFrom MCMCpack procrustes
#' @importFrom grDevices boxplot.stats dev.interactive devAskNewPage rainbow
#' @importFrom graphics mtext par rug title
#' @importFrom stats acf density printCoefmat quantile setNames ts.plot dist kmeans rbinom
#' @importFrom spatstat.geom owin
#' @importFrom spatstat.random rpoispp
#' @importFrom plotly ggplotly add_markers add_text
#' @importFrom stats median pnorm rnorm runif
#' @importFrom utils capture.output setTxtProgressBar txtProgressBar
#' @importFrom gridExtra grid.arrange arrangeGrob
#' @importFrom fpc cluster.stats
#' @importFrom kernlab specc
#' @importFrom plyr laply
#' @importFrom gridExtra arrangeGrob
#' @importFrom grDevices dev.off pdf
#' @importFrom utils stack
#' @import ggplot2 GPArotation dplyr pROC spatstat grid purrr parallel coda grid tidyr
#' @useDynLib lsirm12pl
#'
NULL

Try the lsirm12pl package in your browser

Any scripts or data that you put into this service are public.

lsirm12pl documentation built on April 4, 2025, 2:40 a.m.