View source: R/lslx-s3-interface.R
plsem | R Documentation |
plsem()
is an S3
interface for obaining a fitted lslx
object.
plsem( model, data, penalty_method = "mcp", lambda_grid = "default", delta_grid = "default", numeric_variable, ordered_variable, weight_variable, auxiliary_variable, group_variable, reference_group, sample_cov, sample_mean, sample_size, sample_moment_acov, verbose = TRUE, ... )
model |
A |
data |
A |
penalty_method |
A |
lambda_grid |
A non-negative |
delta_grid |
A non-negative |
numeric_variable |
A |
ordered_variable |
A |
weight_variable |
A |
auxiliary_variable |
A |
group_variable |
A |
reference_group |
A |
sample_cov |
A numeric |
sample_mean |
A |
sample_size |
A |
sample_moment_acov |
A numeric |
verbose |
A |
... |
Other arguments. For details, please see the documentation of |
A fitted lslx
object
## EXAMPLE: Semi-Confirmatory Factor Analysis with lavaan Style ## # specify a factor analysis model with lavaan style model_fa <- "visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 pen() * visual =~ x4 + x5 + x6 + x7 + x8 + x9 pen() * textual =~ x1 + x2 + x3 + x7 + x8 + x9 pen() * speed =~ x1 + x2 + x3 + x4 + x5 + x6 visual ~~ 1 * visual textual ~~ 1 * textual speed ~~ 1 * speed" # fit with mcp under specified penalty levels and convexity levels lslx_fa <- plsem(model = model_fa, data = lavaan::HolzingerSwineford1939, penalty_method = "mcp", lambda_grid = seq(.02, .60, .02), delta_grid = c(1.5, 3.0, Inf)) # summarize fitting result under the penalty level selected by 'bic' summary(lslx_fa, selector = "bic")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.