DHSimulate | R Documentation |
Uses the Davies-Harte algorithm to simulate a Gaussian time series with specified autocovariance function.
DHSimulate(n, r, ReportTestOnly = FALSE, rand.gen = rnorm, ...)
n |
length of time series to be generated |
r |
autocovariances at lags 0,1,... |
ReportTestOnly |
FALSE – Run normally so terminates with an error if Davies-Harte condition does not hold. Othewise if TRUE, then output is TRUE if the Davies-Harte condition holds and FALSE if it does not. |
rand.gen |
random number generator to use. It is assumed to have mean zero and variance one. |
... |
optional arguments passed to |
The method uses the FFT and so is most efficient if the series length, n, is a power of 2. The method requires that a complicated non-negativity condition be satisfed. Craigmile (2003) discusses this condition in more detail and shows for anti-persistent time series this condition will always be satisfied. Sometimes, as in the case of fractinally differenced white noise with parameter d=0.45 and n=5000, this condition fails and the algorithm doesn't work. In this case, an error message is generated and the function halts.
Either a vector of length containing the simulated time series if Davies-Harte condition holds and ReportTestOnly = FALSE. If argument ReportTestOnly is set to TRUE, then output is logical variable indicating if Davies-Harte condition holds, TRUE, or if it does not, FALSE.
A.I. McLeod
Craigmile, P.F. (2003). Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes. Journal of Time Series Analysis, 24, 505-511.
Davies, R. B. and Harte, D. S. (1987). Tests for Hurst Effect. Biometrika 74, 95–101.
McLeod, A.I., Yu, Hao, Krougly, Zinovi L. (2007). Algorithms for Linear Time Series Analysis, Journal of Statistical Software.
\
DLSimulate
,
SimGLP
,
arima.sim
#simulate a process with autocovariance function 1/(k+1), k=0,1,...
# and plot it
n<-2000
r<-1/sqrt(1:n)
z<-DHSimulate(n, r)
plot.ts(z)
#simulate AR(1) and produce a table comparing the theoretical and sample
# autocovariances and autocorrelations
phi<- -0.8
n<-4096
g0<-1/(1-phi^2)
#theoretical autocovariances
tacvf<-g0*(phi^(0:(n-1)))
z<-DHSimulate(n, tacvf)
#autocorrelations
sacf<-acf(z, plot=FALSE)$acf
#autocovariances
sacvf<-acf(z, plot=FALSE,type="covariance")$acf
tacf<-tacvf/tacvf[1]
tb<-matrix(c(tacvf[1:10],sacvf[1:10],tacf[1:10],sacf[1:10]),ncol=4)
dimnames(tb)<-list(0:9, c("Tacvf","Sacvf","Tacf","Sacf"))
tb
#Show the Davies-Harte condition sometimes hold and sometimes does not
# in the case of fractionally differenced white noise
#
#Define autocovariance function for fractionally differenced white noise
`tacvfFdwn` <-
function(d, maxlag)
{
x <- numeric(maxlag + 1)
x[1] <- gamma(1 - 2 * d)/gamma(1 - d)^2
for(i in 1:maxlag)
x[i + 1] <- ((i - 1 + d)/(i - d)) * x[i]
x
}
#Build table to show values of d for which condition is TRUE when n=5000
n<-5000
ds<-c(-0.45, -0.25, -0.05, 0.05, 0.25, 0.45)
tb<-logical(length(ds))
names(tb)<-ds
for (kd in 1:length(ds)){
d<-ds[kd]
r<-tacvfFdwn(d, n-1)
tb[kd]<-DHSimulate(n, r, ReportTestOnly = TRUE)
}
tb
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.