Nothing
#' Latent Variable Models for Networks
#'
#' \code{lvm4net} provides a range of tools for latent variable models for
#' network data. Most of the models are implemented using a fast
#' variational inference approach.
#'
#' Latent space models for one-mode binary networks: the function \code{\link{lsm}} implements the latent space model (LSM) introduced by Hoff et al. (2002) using variational inference and squared Euclidian distance; the function
#' \code{\link{lsjm}} implements latent space joint model (LSJM) for multiplex networks introduced by
#' Gollini and Murphy (2016).
#' These models assume that each node of a network has a latent position
#' in a latent space: the closer two nodes are in the latent space, the more likely
#' they are connected.
#'
#' Latent variable models for binary bipartite networks: the function \code{\link{lca}} implements the latent class analysis (LCA) to find groups in the sender nodes (with the condition of independence within the groups); the function \code{\link{lta}} implements the latent trait analysis (LTA) to model the dependence in the receiver nodes by using a continuous latent variable; the function \code{\link{mlta}} implements the mixture of latent trait analyzers (MLTA) introduced by Gollini and Murphy (2014) and Gollini (in press) to identify groups assuming the existence of a latent trait describing the dependence structure between receiver nodes within groups of sender nodes and therefore capturing the heterogeneity of sender nodes' behaviour within groups. \code{\link{lta}} and \code{\link{mlta}} use variational inference.
#' @references Gollini, I. (in press) 'A mixture model approach for clustering bipartite networks', Challenges in Social Network Research Volume in the Lecture Notes in Social Networks (LNSN - Series of Springer). Preprint: \url{https://arxiv.org/abs/1905.02659}.
#' @references Gollini, I., and Murphy, T. B. (2014), 'Mixture of Latent Trait Analyzers for Model-Based Clustering of Categorical Data', Statistics and Computing, 24(4), 569-588 \url{http://arxiv.org/abs/1301.2167}.
#' @references Gollini, I., and Murphy, T. B. (2016), 'Joint Modelling of Multiple Network Views', Journal of Computational and Graphical Statistics, 25(1), 246-265 \url{http://arxiv.org/abs/1301.3759}.
#' @references Hoff, P., Raftery, A., and Handcock, M. (2002), "Latent Space Approaches to Social Network Analysis", Journal of the American Statistical Association, 97, 1090--1098.
#'
#' @name lvm4net-package
#' @aliases lvm4net
#' @import MASS
#' @import ergm
#' @import network
#' @importFrom stats as.dist cmdscale dist glm quantile rbinom rnorm sd weighted.mean
#' @importFrom utils combn
#' @importFrom graphics abline boxplot legend lines matlines matplot matpoints mtext par plot points polygon text
#' @importFrom grDevices rgb
#' @importFrom igraph layout.fruchterman.reingold graph.adjacency
#' @importFrom ellipse ellipse
#' @importFrom mvtnorm dmvnorm
#' @importFrom glmmML ghq
#' @importFrom corpcor wt.var
#' @docType package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.