Nothing
Code
testout_RR$descriptive$summary
Output
trt_ind treatment type n events events_pct
1 B B Before matching 400.0000 280.0000 70.00000
2 A A Before matching 500.0000 390.0000 78.00000
3 B B After matching 400.0000 280.0000 70.00000
4 A A After matching 199.4265 142.8968 71.65386
Code
testout_RR$inferential$summary
Output
case RR LCL UCL pval
1 AB 1.114286 1.0293724 1.206204 0.007455267
2 adjusted_AB 1.023627 0.9123647 1.148457 0.690809607
Code
testout_RR$inferential$fit
Output
$model_before
Call: glm(formula = RESPONSE ~ ARM, family = binomial(link = glm_link),
data = dat)
Coefficients:
(Intercept) ARMA
-0.3567 0.1082
Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
Null Deviance: 1023
Residual Deviance: 1016 AIC: 1020
$model_after
Call: glm(formula = RESPONSE ~ ARM, family = binomial(link = glm_link),
data = dat, weights = weights)
Coefficients:
(Intercept) ARMA
-0.35667 0.02335
Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
Null Deviance: 726.7
Residual Deviance: 726.5 AIC: 712.5
$res_AB
$res_AB$est
[1] 1.023627
$res_AB$se
[1] 0.06025155
$res_AB$ci_l
[1] 0.9123647
$res_AB$ci_u
[1] 1.148457
$res_AB$pval
[1] 0.6908096
$res_AB_unadj
$res_AB_unadj$est
[1] 1.114286
$res_AB_unadj$se
[1] 0.04511891
$res_AB_unadj$ci_l
[1] 1.029372
$res_AB_unadj$ci_u
[1] 1.206204
$res_AB_unadj$pval
[1] 0.007455267
$boot_res
NULL
$boot_res_AB
NULL
Code
testout_RD$descriptive$summary
Output
trt_ind treatment type n events events_pct
1 B B Before matching 400.0000 280.0000 70.00000
2 A A Before matching 500.0000 390.0000 78.00000
3 B B After matching 400.0000 280.0000 70.00000
4 A A After matching 199.4265 142.8968 71.65386
Code
testout_RD$inferential$summary
Output
case RD LCL UCL pval
1 AB 8.000000 2.224920 13.775080 0.006626293
2 adjusted_AB 1.653865 -6.532173 9.839902 0.692119096
Code
testout_RD$inferential$fit
Output
$model_before
Call: glm(formula = RESPONSE ~ ARM, family = binomial(link = glm_link),
data = dat)
Coefficients:
(Intercept) ARMA
0.70 0.08
Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
Null Deviance: 1023
Residual Deviance: 1016 AIC: 1020
$model_after
Call: glm(formula = RESPONSE ~ ARM, family = binomial(link = glm_link),
data = dat, weights = weights)
Coefficients:
(Intercept) ARMA
0.70000 0.01654
Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
Null Deviance: 726.7
Residual Deviance: 726.5 AIC: 712.5
$res_AB
$res_AB$est
[1] 1.653865
$res_AB$se
[1] 4.176627
$res_AB$ci_l
[1] -6.532173
$res_AB$ci_u
[1] 9.839902
$res_AB$pval
[1] 0.6921191
$res_AB_unadj
$res_AB_unadj$est
[1] 8
$res_AB_unadj$se
[1] 2.946523
$res_AB_unadj$ci_l
[1] 2.22492
$res_AB_unadj$ci_u
[1] 13.77508
$res_AB_unadj$pval
[1] 0.006626293
$boot_res
NULL
$boot_res_AB
NULL
Code
testout_OR$descriptive$summary
Output
trt_ind treatment type n events events_pct
1 B B Before matching 400.0000 280.0000 70.00000
2 A A Before matching 500.0000 390.0000 78.00000
3 B B After matching 400.0000 280.0000 70.00000
4 A A After matching 199.4265 142.8968 71.65386
Code
testout_OR$inferential$summary
Output
case OR LCL UCL pval
1 AB 1.519481 1.1247154 2.052805 0.006417064
2 adjusted_AB 1.083350 0.7268601 1.614683 0.694183560
Code
testout_OR$inferential$fit
Output
$model_before
Call: glm(formula = RESPONSE ~ ARM, family = binomial(link = glm_link),
data = dat)
Coefficients:
(Intercept) ARMA
0.8473 0.4184
Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
Null Deviance: 1023
Residual Deviance: 1016 AIC: 1020
$model_after
Call: glm(formula = RESPONSE ~ ARM, family = binomial(link = glm_link),
data = dat, weights = weights)
Coefficients:
(Intercept) ARMA
0.84730 0.08006
Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
Null Deviance: 726.7
Residual Deviance: 726.5 AIC: 712.5
$res_AB
$res_AB$est
[1] 1.08335
$res_AB$se
[1] 0.2275624
$res_AB$ci_l
[1] 0.7268601
$res_AB$ci_u
[1] 1.614683
$res_AB$pval
[1] 0.6941836
$res_AB_unadj
$res_AB_unadj$est
[1] 1.519481
$res_AB_unadj$se
[1] 0.2373883
$res_AB_unadj$ci_l
[1] 1.124715
$res_AB_unadj$ci_u
[1] 2.052805
$res_AB_unadj$pval
[1] 0.006417064
$boot_res
NULL
$boot_res_AB
NULL
Code
print(testout_boot_RR$descriptive$summary, digits = 5)
Output
trt_ind treatment type n events events_pct
1 B B Before matching 400.00 280.0 70.000
2 A A Before matching 500.00 390.0 78.000
3 B B After matching 400.00 280.0 70.000
4 A A After matching 199.43 142.9 71.654
Code
print(testout_boot_RR$inferential$summary, digits = 5)
Output
case RR LCL UCL pval
1 AB 1.1143 1.02937 1.2062 0.0074553
2 adjusted_AB 1.0236 0.91236 1.1485 0.6908096
Code
print(testout_boot_RR$inferential$fit, digits = 5)
Output
$model_before
Call: glm(formula = RESPONSE ~ ARM, family = binomial(link = glm_link),
data = dat)
Coefficients:
(Intercept) ARMA
-0.35667 0.10821
Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
Null Deviance: 1023
Residual Deviance: 1015.6 AIC: 1019.6
$model_after
Call: glm(formula = RESPONSE ~ ARM, family = binomial(link = glm_link),
data = dat, weights = weights)
Coefficients:
(Intercept) ARMA
-0.356675 0.023352
Degrees of Freedom: 899 Total (i.e. Null); 898 Residual
Null Deviance: 726.66
Residual Deviance: 726.48 AIC: 712.47
$res_AB
$res_AB$est
[1] 1.0236
$res_AB$se
[1] 0.060252
$res_AB$ci_l
[1] 0.91236
$res_AB$ci_u
[1] 1.1485
$res_AB$pval
[1] 0.69081
$res_AB_unadj
$res_AB_unadj$est
[1] 1.1143
$res_AB_unadj$se
[1] 0.045119
$res_AB_unadj$ci_l
[1] 1.0294
$res_AB_unadj$ci_u
[1] 1.2062
$res_AB_unadj$pval
[1] 0.0074553
$boot_res
STRATIFIED BOOTSTRAP
Call:
boot(data = boot_ipd, statistic = stat_fun, R = R, strata = weights_object$boot_strata,
w_obj = weights_object, pseudo_ipd = pseudo_ipd, normalize = normalize_weights)
Bootstrap Statistics :
original bias std. error
t1* 0.0233518 0.01366708 0.05380528
t2* 0.0030551 -0.00004315 0.00038235
$boot_res_AB
$boot_res_AB$est
[1] 1.0236
$boot_res_AB$se
[1] NA
$boot_res_AB$ci_l
[1] 0.90867
$boot_res_AB$ci_u
[1] 1.122
$boot_res_AB$pval
[1] NA
Code
testout$descriptive$summary
Output
trt_ind treatment type records n.max n.start events
1 B B Before matching 300 300.0000 300.0000 178.00000
2 A A Before matching 500 500.0000 500.0000 190.00000
3 B B After matching 300 300.0000 300.0000 178.00000
4 A A After matching 500 199.4265 199.4265 65.68878
rmean se(rmean) median 0.95LCL 0.95UCL
1 4.303551 0.3367260 2.746131 2.261125 3.320857
2 8.709690 0.3551477 7.587627 6.278691 10.288538
3 4.303551 0.3367260 2.746131 2.261125 3.320857
4 10.166029 0.5499915 11.900015 7.815275 14.873786
Code
testout$inferential$summary
Output
case HR LCL UCL pval
1 AB 0.3748981 0.3039010 0.4624815 5.245204e-20
2 adjusted_AB 0.2834780 0.2074664 0.3873387 2.473442e-15
Code
testout$inferential$fit
Output
$km_before
Call: survfit(formula = Surv(TIME, EVENT) ~ ARM, data = dat, conf.type = km_conf_type)
n events median 0.95LCL 0.95UCL
ARM=B 300 178 83.6 68.8 101
ARM=A 500 190 230.9 191.1 313
$km_after
Call: survfit(formula = Surv(TIME, EVENT) ~ ARM, data = dat, weights = dat$weights,
conf.type = km_conf_type)
records n events median 0.95LCL 0.95UCL
ARM=B 300 300 178.0 83.6 68.8 101
ARM=A 500 199 65.7 362.2 237.9 453
$model_before
Call:
coxph(formula = Surv(TIME, EVENT) ~ ARM, data = dat)
coef exp(coef) se(coef) z p
ARMA -0.9811 0.3749 0.1071 -9.159 <2e-16
Likelihood ratio test=80.62 on 1 df, p=< 2.2e-16
n= 800, number of events= 368
$model_after
Call:
coxph(formula = Surv(TIME, EVENT) ~ ARM, data = dat, weights = weights,
robust = TRUE)
coef exp(coef) se(coef) robust se z p
ARMA -1.2606 0.2835 0.1504 0.1593 -7.915 2.47e-15
Likelihood ratio test=80.4 on 1 df, p=< 2.2e-16
n= 800, number of events= 368
$res_AB
$res_AB$est
[1] 0.283478
$res_AB$se
[1] 0.04601759
$res_AB$ci_l
[1] 0.2074664
$res_AB$ci_u
[1] 0.3873387
$res_AB$pval
[1] 2.473442e-15
$res_AB_unadj
$res_AB_unadj$est
[1] 0.3748981
$res_AB_unadj$se
[1] 0.0405065
$res_AB_unadj$ci_l
[1] 0.303901
$res_AB_unadj$ci_u
[1] 0.4624815
$res_AB_unadj$pval
[1] 5.245204e-20
$boot_res
NULL
$boot_res_AB
NULL
Code
print(testout2$descriptive$summary, digits = 5)
Output
trt_ind treatment type records n.max n.start events rmean
1 B B Before matching 300 300.00 300.00 178.000 4.3036
2 A A Before matching 500 500.00 500.00 190.000 8.7097
3 B B After matching 300 300.00 300.00 178.000 4.3036
4 A A After matching 500 199.43 199.43 65.689 10.1660
se(rmean) median 0.95LCL 0.95UCL
1 0.33673 2.7461 2.2611 3.3209
2 0.35515 7.5876 6.2787 10.2885
3 0.33673 2.7461 2.2611 3.3209
4 0.54999 11.9000 7.8153 14.8738
Code
print(testout2$inferential$summary, digits = 5)
Output
case HR LCL UCL pval
1 AB 0.37490 0.30390 0.46248 5.2452e-20
2 adjusted_AB 0.28348 0.20747 0.38734 2.4734e-15
Code
print(testout2$inferential$fit, digits = 5)
Output
$km_before
Call: survfit(formula = Surv(TIME, EVENT) ~ ARM, data = dat, conf.type = km_conf_type)
n events median 0.95LCL 0.95UCL
ARM=B 300 178 83.585 68.823 101.08
ARM=A 500 190 230.948 191.108 313.16
$km_after
Call: survfit(formula = Surv(TIME, EVENT) ~ ARM, data = dat, weights = dat$weights,
conf.type = km_conf_type)
records n events median 0.95LCL 0.95UCL
ARM=B 300 300.00 178.000 83.585 68.823 101.08
ARM=A 500 199.43 65.689 362.207 237.877 452.72
$model_before
Call:
coxph(formula = Surv(TIME, EVENT) ~ ARM, data = dat)
coef exp(coef) se(coef) z p
ARMA -0.98110 0.37490 0.10712 -9.1589 < 2.2e-16
Likelihood ratio test=80.62 on 1 df, p=< 2.22e-16
n= 800, number of events= 368
$model_after
Call:
coxph(formula = Surv(TIME, EVENT) ~ ARM, data = dat, weights = weights,
robust = TRUE)
coef exp(coef) se(coef) robust se z p
ARMA -1.26062 0.28348 0.15035 0.15927 -7.915 2.473e-15
Likelihood ratio test=80.4 on 1 df, p=< 2.22e-16
n= 800, number of events= 368
$res_AB
$res_AB$est
[1] 0.28348
$res_AB$se
[1] 0.046018
$res_AB$ci_l
[1] 0.20747
$res_AB$ci_u
[1] 0.38734
$res_AB$pval
[1] 2.4734e-15
$res_AB_unadj
$res_AB_unadj$est
[1] 0.3749
$res_AB_unadj$se
[1] 0.040506
$res_AB_unadj$ci_l
[1] 0.3039
$res_AB_unadj$ci_u
[1] 0.46248
$res_AB_unadj$pval
[1] 5.2452e-20
$boot_res
STRATIFIED BOOTSTRAP
Call:
boot(data = boot_ipd, statistic = stat_fun, R = R, strata = weights_object$boot_strata,
w_obj = weights_object, pseudo_ipd = pseudo_ipd, normalize = normalize_weights)
Bootstrap Statistics :
original bias std. error
t1* -1.260621 0.00245135 0.1313882
t2* 0.025367 0.00058194 0.0026704
$boot_res_AB
$boot_res_AB$est
[1] 0.28348
$boot_res_AB$se
[1] NA
$boot_res_AB$ci_l
[1] 0.21858
$boot_res_AB$ci_u
[1] 0.36584
$boot_res_AB$pval
[1] NA
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.