Nothing
#' Send a custom prompt to the LLM
#'
#' @description
#' Use a Large Language Model (LLM) to process the provided text using the
#' instructions from `prompt`
#'
#' @inheritParams llm_classify
#' @param prompt The prompt to append to each record sent to the LLM
#' @param valid_resps If the response from the LLM is not open, but
#' deterministic, provide the options in a vector. This function will set to
#' `NA` any response not in the options
#' @examples
#' \donttest{
#' library(mall)
#'
#' data("reviews")
#'
#' llm_use("ollama", "llama3.2", seed = 100, .silent = TRUE)
#'
#' my_prompt <- paste(
#' "Answer a question.",
#' "Return only the answer, no explanation",
#' "Acceptable answers are 'yes', 'no'",
#' "Answer this about the following text, is this a happy customer?:"
#' )
#'
#' reviews |>
#' llm_custom(review, my_prompt)
#' }
#' @returns `llm_custom` returns a `data.frame` or `tbl` object.
#' `llm_vec_custom` returns a vector that is the same length as `x`.
#' @export
llm_custom <- function(
.data,
col,
prompt = "",
pred_name = ".pred",
valid_resps = "") {
UseMethod("llm_custom")
}
#' @export
llm_custom.data.frame <- function(.data,
col,
prompt = "",
pred_name = ".pred",
valid_resps = NULL) {
mutate(
.data = .data,
!!pred_name := llm_vec_custom(
x = {{ col }},
prompt = prompt,
valid_resps = valid_resps
)
)
}
#' @rdname llm_custom
#' @export
llm_vec_custom <- function(x, prompt = "", valid_resps = NULL) {
m_vec_prompt(
x = x,
prompt = prompt,
valid_resps = valid_resps
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.