Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
suppressMessages(suppressWarnings(library(dplyr))) suppressMessages(suppressWarnings(library(ggplot2))) suppressMessages(suppressWarnings(library(magrittr))) suppressMessages(suppressWarnings(library(matric)))
sim_df <- matric::sim_calculate(cellhealth)
drop_group <- data.frame(Metadata_gene_name = "EMPTY") reference <- data.frame(Metadata_gene_name = c("Chr2")) all_same_cols_ref <- c( "Metadata_cell_line", "Metadata_Plate" ) all_same_cols_rep <- c( "Metadata_cell_line", "Metadata_gene_name", "Metadata_pert_name" ) all_same_cols_rep_ref <- c( "Metadata_cell_line", "Metadata_gene_name", "Metadata_pert_name", "Metadata_Plate" ) any_different_cols_non_rep <- c( "Metadata_cell_line", "Metadata_gene_name", "Metadata_pert_name" ) all_same_cols_non_rep <- c( "Metadata_cell_line", "Metadata_Plate" ) all_different_cols_non_rep <- c("Metadata_gene_name") all_same_cols_group <- c( "Metadata_cell_line", "Metadata_gene_name" ) any_different_cols_group <- c( "Metadata_cell_line", "Metadata_gene_name", "Metadata_pert_name" ) annotation_cols <- c( "Metadata_cell_line", "Metadata_gene_name", "Metadata_pert_name" )
collated_sim <- matric::sim_collate( sim_df, reference = reference, all_same_cols_rep = all_same_cols_rep, all_same_cols_rep_ref = all_same_cols_rep_ref, all_same_cols_ref = all_same_cols_ref, any_different_cols_non_rep = any_different_cols_non_rep, all_same_cols_non_rep = all_same_cols_non_rep, all_different_cols_non_rep = all_different_cols_non_rep, any_different_cols_group = any_different_cols_group, all_same_cols_group = all_same_cols_group, annotation_cols = annotation_cols, drop_group = drop_group )
metrics <- matric::sim_metrics(collated_sim, "ref", calculate_grouped = TRUE)
ggplot( metrics$level_1_0, aes(sim_scaled_mean_ref_i, fill = Metadata_gene_name) ) + geom_histogram(binwidth = .1) + facet_wrap(~Metadata_cell_line) + theme(legend.position = "bottom", legend.box = "horizontal")
ggplot( metrics$level_1, aes(sim_scaled_mean_ref_i_mean_i, fill = Metadata_gene_name) ) + geom_histogram(binwidth = .1) + facet_wrap(~Metadata_cell_line) + theme(legend.position = "bottom", legend.box = "horizontal")
ggplot( metrics$level_2_1, aes(sim_scaled_mean_ref_g, fill = Metadata_gene_name) ) + geom_histogram(binwidth = .1) + facet_wrap(~Metadata_cell_line) + theme(legend.position = "bottom", legend.box = "horizontal")
ggplot( cellhealthmetrics$level_1_0, aes(sim_scaled_mean_ref_i, fill = Metadata_gene_name) ) + geom_histogram(binwidth = .1) + facet_wrap(~Metadata_cell_line) + theme(legend.position = "none")
ggplot( cellhealthmetrics$level_1, aes(sim_scaled_mean_ref_i_mean_i, fill = Metadata_gene_name) ) + geom_histogram(binwidth = .1) + facet_wrap(~Metadata_cell_line) + theme(legend.position = "none")
ggplot( cellhealthmetrics$level_1_0, aes(sim_retrieval_average_precision_ref_i, fill = Metadata_gene_name) ) + geom_histogram(binwidth = .01) + facet_wrap(~Metadata_cell_line) + theme(legend.position = "none")
ggplot( cellhealthmetrics$level_2_1, aes(sim_scaled_mean_ref_g, fill = Metadata_gene_name) ) + geom_histogram(binwidth = .1) + facet_wrap(~Metadata_cell_line) + theme(legend.position = "none")
ggplot( cellhealthmetrics$level_2_1, aes(sim_retrieval_average_precision_ref_g, fill = Metadata_gene_name) ) + geom_histogram(binwidth = .02) + facet_wrap(~Metadata_cell_line) + theme(legend.position = "none")
sim_df_lazy <- matric::sim_calculate( cellhealth, lazy = TRUE ) collated_sim_lazy <- matric::sim_collate( sim_df_lazy, reference = reference, all_same_cols_rep = all_same_cols_rep, all_same_cols_rep_ref = all_same_cols_rep_ref, all_same_cols_ref = all_same_cols_ref, any_different_cols_non_rep = any_different_cols_non_rep, all_same_cols_non_rep = all_same_cols_non_rep, all_different_cols_non_rep = all_different_cols_non_rep, any_different_cols_group = any_different_cols_group, all_same_cols_group = all_same_cols_group, annotation_cols = annotation_cols, drop_group = drop_group ) collated_sim_lazy <- sim_calculate_ij(cellhealth, collated_sim_lazy) metrics_lazy <- matric::sim_metrics(collated_sim_lazy, "ref", calculate_grouped = TRUE) all.equal( metrics_lazy, metrics )
The optimizations are useful only if you are not calculating non-replicate metrics and if the group replicates are not computed on references
sim_df_optimized_lazy <- matric::sim_calculate( cellhealth, lazy = TRUE, all_same_cols_rep_or_group = all_same_cols_group, all_same_cols_rep_ref = all_same_cols_rep_ref, all_same_cols_ref = all_same_cols_ref, reference = reference ) collated_sim_optimized_lazy <- matric::sim_collate( sim_df_optimized_lazy, reference = reference, all_same_cols_rep = all_same_cols_rep, all_same_cols_rep_ref = all_same_cols_rep_ref, all_same_cols_ref = all_same_cols_ref, any_different_cols_non_rep = NULL, all_same_cols_non_rep = NULL, all_different_cols_non_rep = NULL, any_different_cols_group = NULL, all_same_cols_group = NULL, annotation_cols = annotation_cols, drop_group = drop_group ) collated_sim_optimized_lazy <- sim_calculate_ij(cellhealth, collated_sim_optimized_lazy) metrics_optimized_lazy <- matric::sim_metrics( collated_sim_optimized_lazy, "ref", calculate_grouped = FALSE ) all.equal( metrics_optimized_lazy$level_1_0, metrics$level_1_0 ) all.equal( metrics_optimized_lazy$level_1, metrics$level_1 )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.