View source: R/vandermonde.matrix.R
vandermonde.matrix | R Documentation |
This function returns an m by n matrix of the powers of the alpha vector
vandermonde.matrix(alpha, n)
alpha |
A numerical vector of values |
n |
The column dimension of the Vandermonde matrix |
In linear algebra, a Vandermonde matrix is an m \times n matrix with terms of a geometric progression of an m \times 1 parameter vector {\bf{α }} = {≤ft\lbrack {\begin{array}{cccc} {{α _1}}&{{α _2}}& \cdots &{{α _m}} \end{array}} \right\rbrack^\prime }
such that V≤ft( {\bf{α }} \right) = ≤ft\lbrack {\begin{array}{ccccc} 1&{{α _1}}&{α _1^2}& \cdots &{α _1^{n - 1}}\\ 1&{{α _2}}&{α _2^2}& \cdots &{α _2^{n - 1}}\\ 1&{{α _3}}&{α _3^2}& \cdots &{α _3^{n - 1}}\\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1&{{α _m}}&{α _m^2}& \cdots &{α _m^{n - 1}} \end{array}} \right\rbrack.
A matrix.
Frederick Novomestky fnovomes@poly.edu
Horn, R. A. and C. R. Johnson (1991). Topics in matrix analysis, Cambridge University Press.
alpha <- c( .1, .2, .3, .4 ) V <- vandermonde.matrix( alpha, 4 ) print( V )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.