MoE,mdph-method | R Documentation |
MoE method for mdph Class
## S4 method for signature 'mdph'
MoE(
x,
formula,
y,
data,
alpha_vecs = NULL,
weight = numeric(0),
stepsEM = 1000,
every = 10,
rand_init = TRUE,
maxWts = 1000
)
x |
An object of class mdph. |
formula |
A regression formula. |
y |
A matrix of observations. |
data |
A data frame of covariates. |
alpha_vecs |
Matrix of initial probabilities. |
weight |
Vector of weights. |
stepsEM |
Number of EM steps to be performed. |
every |
Number of iterations between likelihood display updates. |
rand_init |
Random initiation in the R-step. |
maxWts |
Maximal number of weights in the nnet function. |
An object of class sph.
x <- mdph(structure = c("general", "general"))
n <- 100
responses <- cbind(rpois(n, 3) + 1, rbinom(n, 5, 0.5))
covariates <- data.frame(age = sample(18:65, n, replace = TRUE) / 100, income = runif(n, 0, 0.99))
f <- responses ~ age + income
MoE(x = x, formula = f, y = responses, data = covariates, stepsEM = 20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.