View source: R/summary.maxim.R
summary.maxim | R Documentation |
Summarizes the general maximization results in a way that does not assume the function is log-likelihood.
## S3 method for class 'maxim'
summary( object, hessian=FALSE, unsucc.step=FALSE, ... )
## S3 method for class 'summary.maxim'
print(x,
max.rows=getOption("max.rows", 20),
max.cols=getOption("max.cols", 7),
... )
object |
optimization result, object of class
|
hessian |
logical, whether to display Hessian matrix. |
unsucc.step |
logical, whether to describe last unsuccesful step
if |
x |
object of class |
max.rows |
maximum number of rows to be printed. This applies to the resulting coefficients (as those are printed as a matrix where the other column is the gradient), and to the Hessian if requested. |
max.cols |
maximum number of columns to be printed. Only Hessian output, if requested, uses this argument. |
... |
currently not used. |
Object of class summary.maxim
, intended to be printed with
corresponding print method.
Ott Toomet
maxNR
, returnCode
,
returnMessage
## minimize a 2D quadratic function:
f <- function(b) {
x <- b[1]; y <- b[2];
val <- -(x - 2)^2 - (y - 3)^2 # concave parabola
attr(val, "gradient") <- c(-2*x + 4, -2*y + 6)
attr(val, "hessian") <- matrix(c(-2, 0, 0, -2), 2, 2)
val
}
## Note that NR finds the minimum of a quadratic function with a single
## iteration. Use c(0,0) as initial value.
res <- maxNR( f, start = c(0,0) )
summary(res)
summary(res, hessian=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.