glmboost | R Documentation |

Gradient boosting for optimizing arbitrary loss functions where component-wise linear models are utilized as base-learners.

## S3 method for class 'formula' glmboost(formula, data = list(), weights = NULL, offset = NULL, family = Gaussian(), na.action = na.pass, contrasts.arg = NULL, center = TRUE, control = boost_control(), oobweights = NULL, ...) ## S3 method for class 'matrix' glmboost(x, y, center = TRUE, weights = NULL, offset = NULL, family = Gaussian(), na.action = na.pass, control = boost_control(), oobweights = NULL, ...) ## Default S3 method: glmboost(x, ...)

`formula` |
a symbolic description of the model to be fit. |

`data` |
a data frame containing the variables in the model. |

`weights` |
an optional vector of weights to be used in the fitting process. |

`offset` |
a numeric vector to be used as offset (optional). |

`family` |
a |

`na.action` |
a function which indicates what should happen when the data
contain |

`contrasts.arg` |
a list, whose entries are contrasts suitable for input
to the |

`center` |
logical indicating of the predictor variables are centered before fitting. |

`control` |
a list of parameters controlling the algorithm. For
more details see |

`oobweights` |
an additional vector of out-of-bag weights, which is
used for the out-of-bag risk (i.e., if |

`x` |
design matrix. Sparse matrices of class |

`y` |
vector of responses. |

`...` |
additional arguments passed to |

A (generalized) linear model is fitted using a boosting algorithm based on component-wise univariate linear models. The fit, i.e., the regression coefficients, can be interpreted in the usual way. The methodology is described in Buehlmann and Yu (2003), Buehlmann (2006), and Buehlmann and Hothorn (2007). Examples and further details are given in Hofner et al (2014).

An object of class `glmboost`

with `print`

, `coef`

,
`AIC`

and `predict`

methods being available.
For inputs with longer variable names, you might want to change
`par("mai")`

before calling the `plot`

method of `glmboost`

objects visualizing the coefficients path.

Peter Buehlmann and Bin Yu (2003),
Boosting with the L2 loss: regression and classification.
*Journal of the American Statistical Association*, **98**,
324–339.

Peter Buehlmann (2006), Boosting for high-dimensional linear models.
*The Annals of Statistics*, **34**(2), 559–583.

Peter Buehlmann and Torsten Hothorn (2007),
Boosting algorithms: regularization, prediction and model fitting.
*Statistical Science*, **22**(4), 477–505.

Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Mattthias Schmid and
Benjamin Hofner (2010), Model-based Boosting 2.0. *Journal of
Machine Learning Research*, **11**, 2109–2113.

Benjamin Hofner, Andreas Mayr, Nikolay Robinzonov and Matthias Schmid
(2014). Model-based Boosting in R: A Hands-on Tutorial Using the R
Package mboost. *Computational Statistics*, **29**, 3–35.

doi: 10.1007/s00180-012-0382-5

Available as vignette via: `vignette(package = "mboost", "mboost_tutorial")`

See `mboost_fit`

for the generic boosting function,
`gamboost`

for boosted additive models, and
`blackboost`

for boosted trees.

See `baselearners`

for possible base-learners.

See `cvrisk`

for cross-validated stopping iteration.

Furthermore see `boost_control`

, `Family`

and
`methods`

.

### a simple two-dimensional example: cars data cars.gb <- glmboost(dist ~ speed, data = cars, control = boost_control(mstop = 2000), center = FALSE) cars.gb ### coefficients should coincide cf <- coef(cars.gb, off2int = TRUE) ## add offset to intercept coef(cars.gb) + c(cars.gb$offset, 0) ## add offset to intercept (by hand) signif(cf, 3) signif(coef(lm(dist ~ speed, data = cars)), 3) ## almost converged. With higher mstop the results get even better ### now we center the design matrix for ### much quicker "convergence" cars.gb_centered <- glmboost(dist ~ speed, data = cars, control = boost_control(mstop = 2000), center = TRUE) ## plot coefficient paths of glmboost par(mfrow=c(1,2), mai = par("mai") * c(1, 1, 1, 2.5)) plot(cars.gb, main = "without centering") plot(cars.gb_centered, main = "with centering") ### alternative loss function: absolute loss cars.gbl <- glmboost(dist ~ speed, data = cars, control = boost_control(mstop = 1000), family = Laplace()) cars.gbl coef(cars.gbl, off2int = TRUE) ### plot fit par(mfrow = c(1,1)) plot(dist ~ speed, data = cars) lines(cars$speed, predict(cars.gb), col = "red") ## quadratic loss lines(cars$speed, predict(cars.gbl), col = "green") ## absolute loss ### Huber loss with adaptive choice of delta cars.gbh <- glmboost(dist ~ speed, data = cars, control = boost_control(mstop = 1000), family = Huber()) lines(cars$speed, predict(cars.gbh), col = "blue") ## Huber loss legend("topleft", col = c("red", "green", "blue"), lty = 1, legend = c("Gaussian", "Laplace", "Huber"), bty = "n") ### sparse high-dimensional example that makes use of the matrix ### interface of glmboost and uses the matrix representation from ### package Matrix library("Matrix") n <- 100 p <- 10000 ptrue <- 10 X <- Matrix(0, nrow = n, ncol = p) X[sample(1:(n * p), floor(n * p / 20))] <- runif(floor(n * p / 20)) beta <- numeric(p) beta[sample(1:p, ptrue)] <- 10 y <- drop(X %*% beta + rnorm(n, sd = 0.1)) mod <- glmboost(y = y, x = X, center = TRUE) ### mstop needs tuning coef(mod, which = which(beta > 0))

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.