mcgfa: Mixtures of Contaminated Gaussian Factor Analyzers
Version 1.0.0

Performs clustering and classification using the Mixtures of Contaminated Gaussian Factor Analyzers model. Allows for automatic detection of outliers and noise.

AuthorMartin Blostein [aut, cre], Antonio Punzo [ctb], Paul D. McNicholas [ctb, ths]
Date of publication2016-10-02 22:52:42
MaintainerMartin Blostein <martin.blostein@gmail.com>
LicenseGPL (>= 2)
Version1.0.0
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("mcgfa")

Getting started

Package overview

Popular man pages

gaussnoise: Gaussian Clusters with White Noise
mcgfa: Model Fitting for Mixtures of Contaminated Gaussian Factor...
mcgfa-package: mcgfa: Model-Based Clustering and Classification with...
olive: Italian Olive Oil
wine: Italian Wine
See all...

All man pages Function index File listing

Man pages

gaussnoise: Gaussian Clusters with White Noise
mcgfa: Model Fitting for Mixtures of Contaminated Gaussian Factor...
mcgfa-package: mcgfa: Model-Based Clustering and Classification with...
olive: Italian Olive Oil
wine: Italian Wine

Functions

check_init_class Source code
cn_dens Source code
create_progress_bar Source code
gaussnoise Man page
init_load Source code
mcgfa Man page Source code
mcgfa-package Man page
mcgfa_EM Source code
olive Man page
plot.mcgfa Source code
predict.mcgfa Source code
run_mcgfa Source code
wine Man page

Files

src
src/Makevars
src/mahal_updates.c
src/eta_updates.c
src/functions.h
src/other_updates.c
src/alpha_updates.c
src/zv_updates.c
src/mcgfa.c
src/debug.c
src/gaussj.c
src/optimize.c
src/aecm.c
NAMESPACE
data
data/olive.rda
data/gaussnoise.rda
data/wine.rda
R
R/s3methods.R
R/c_wrapper_function.R
R/mcgfa_EM.R
R/init_load.R
R/create_progress_bar.R
R/check_init_class.R
R/mcgfa.R
MD5
DESCRIPTION
man
man/wine.Rd
man/mcgfa.Rd
man/olive.Rd
man/gaussnoise.Rd
man/mcgfa-package.Rd
mcgfa documentation built on May 19, 2017, 4:50 p.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.