mclcar: Estimating Conditional Auto-Regressive (CAR) Models using Monte Carlo Likelihood Methods

The likelihood of direct CAR models and Binomial and Poisson GLM with latent CAR variables are approximated by the Monte Carlo likelihood. The Maximum Monte Carlo likelihood estimator is found either by an iterative procedure of directly maximising the Monte Carlo approximation or by a response surface design method.

AuthorZhe Sha [aut, cre]
Date of publication2016-11-30 14:55:20
MaintainerZhe Sha <zhesha1006@gmail.com>
LicenseGPL (>= 2)
Version0.1-8

View on CRAN

Functions

Avar.lik.dCAR Man page
CAR.simGLM Man page
CAR.simLM Man page
CAR.simTorus Man page
CAR.simWmat Man page
get.beta.glm Man page
get.beta.lm Man page
loglik.dCAR Man page
mclcar Man page
mclcar-package Man page
mcl.dCAR Man page
mcl.glm Man page
mcl.HCAR Man page
mcl.prep.dCAR Man page
mcl.prep.glm Man page
mcl.profile.dCAR Man page
mcl.profile.glm Man page
mple.dCAR Man page
OptimMCL Man page
OptimMCL.HCAR Man page
ploglik.dCAR Man page
plot.rsmMCL Man page
postZ Man page
ranef.HCAR Man page
rsmMCL Man page
ScotCancer Man page
scotplot Man page
sigmabeta Man page
sim.HCAR Man page
summary.OptimMCL Man page
summary.OptimMCL.HCAR Man page
summary.rsmMCL Man page
vmle.dCAR Man page
vmle.glm Man page

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.