mcll: Monte Carlo Local Likelihood Estimation

Share:

Maximum likelihood estimation using a Monte Carlo local likelihood (MCLL) method

Author
Minjeong Jeon, Cari Kaufman, and Sophia Rabe-Hesketh
Date of publication
2014-03-01 20:25:56
Maintainer
Minjeong Jeon<jeon.117@osu.edu>
License
GPL (>= 2)
Version
1.2

View on CRAN

Man pages

mcll_est
Parameter estimation using MCLL
mcll-internal
Internal 'mcll' Functions
mcll-package
Monte Carlo local likelihood estimation
mcll_se
Standard error estimation using MCLL
salamander
Salamander mating dataset from McCullagh and Nelder (1989)
samp
Posterior samples of model parameters for the salamander...

Files in this package

mcll
mcll/NAMESPACE
mcll/data
mcll/data/samp.txt.gz
mcll/data/salamander.txt.gz
mcll/R
mcll/R/lik_locfit.R
mcll/R/lik_local.R
mcll/R/mcll_est.R
mcll/R/mcll_coeff.R
mcll/R/lik_manual.R
mcll/R/mcll_se.R
mcll/MD5
mcll/DESCRIPTION
mcll/man
mcll/man/mcll-package.Rd
mcll/man/mcll-internal.Rd
mcll/man/mcll_se.Rd
mcll/man/mcll_est.Rd
mcll/man/samp.Rd
mcll/man/salamander.Rd