A crucial problem for inference about non-linear models with random effects is that the likelihood function for such models involves integrals for which no analytical solution exists.
For given values $\boldsymbol{b}$ of the random effects the likelihood function of a conditional logit model (and therefore also of a baseline-logit model) can be written in the form
$$ \mathcal{L}{\text{cpl}}(\boldsymbol{y},\boldsymbol{b}) = \exp\left(\ell{\text{cpl}}(\boldsymbol{y},\boldsymbol{b})\right) =\exp \left( \ell(\boldsymbol{y}|\boldsymbol{b};\boldsymbol{\alpha}) -\frac12\ln\det(\boldsymbol{\Sigma}) -\frac12\boldsymbol{b}'\boldsymbol{\Sigma}^{-1}\boldsymbol{b} \right) $$
However, this "complete data" likelihood function cannot be used for inference, because it depends on the unobserved random effects. To arrive at a likelihood function that depends only on observed data, one needs to used the following integrated likelihood function:
$$ \mathcal{L}{\text{obs}}(\boldsymbol{y}) = \int \exp\left(\ell{\text{cpl}}(\boldsymbol{y},\boldsymbol{b})\right) \partial \boldsymbol{b} = \int \exp \left( \ell(\boldsymbol{y}|\boldsymbol{b};\boldsymbol{\alpha}) -\frac12\ln\det(\boldsymbol{\Sigma}) -\frac12\boldsymbol{b}'\boldsymbol{\Sigma}^{-1}\boldsymbol{b} \right) \partial \boldsymbol{b} $$
In general, this integral cannot be "solved", i.e. eliminated from the formula by analytic means (it is "analytically untractable"). Instead, one will compute it either using numeric techniques (e.g. using numerical quadrature) or approximate it using analytical techniques. Unless there is only a single level of random effects numerical quadrature can become computationally be demanding, that is, the computation of the (log-)likelihood function and its derivatives can take a lot of time even on modern, state-of-the-art computer hardware. Yet approximations based on analytical techniques hand may lead to biased estimates in particular in samples where the number of observations relative to the number of random offects is small, but at least they are much easier to compute and sometimes making inference possible after all.
The package "mclogit" supports to kinds of analytical approximations, the Laplace approximation and what one may call the Solomon-Cox appoximation. Both approximations are based on a quadratic expansion of the integrand so that the thus modified integral does have a closed-form solution, i.e. is analytically tractable.
The (first-order) Laplace approximation is based on the quadratic expansion the logarithm of the integrand, the complete-data log-likelihood
$$ \ell_{\text{cpl}}(\boldsymbol{y},\boldsymbol{b})\approx \ell(\boldsymbol{y}|\tilde{\boldsymbol{b}};\boldsymbol{\alpha}) - \frac12 (\boldsymbol{b}-\tilde{\boldsymbol{b}})' \tilde{\boldsymbol{H}} (\boldsymbol{b}-\tilde{\boldsymbol{b}}) -\frac12\ln\det(\boldsymbol{\Sigma}) -\frac12(\boldsymbol{b}-\tilde{\boldsymbol{b}})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{b}-\tilde{\boldsymbol{b}}) $$
where $\tilde{\boldsymbol{b}}$ is the solution to
$$ \frac{\partial\ell_{\text{cpl}}(\boldsymbol{y},\boldsymbol{b})}{\partial\boldsymbol{b}} = 0 $$
and $\tilde{\boldsymbol{H}}=\boldsymbol{H}(\tilde{\boldsymbol{b}})$ is the value of the negative Hessian with respect to $\boldsymbol{b}$
$$ \boldsymbol{H}(\boldsymbol{b})=-\frac{\partial^2\ell(\boldsymbol{y}|\boldsymbol{b};\boldsymbol{\alpha})}{\partial\boldsymbol{b}\partial\boldsymbol{b}'} $$
for $\boldsymbol{b}=\tilde{\boldsymbol{b}}$.
Since this quadratic expansion---let us call it $\ell^*_{\text{Lapl}}(\boldsymbol{y},\boldsymbol{b})$---is a (multivariate) quadratic function of $\boldsymbol{b}$, the integral of its exponential does have a closed-form solution (the relevant formula can be found in @harville:matrix.algebra).
For purposes of estimation, the resulting approximate log-likelihood is more useful:
$$ \ell^*{\text{Lapl}} = \ln\int \exp(\ell{\text{Lapl}}(\boldsymbol{y},\boldsymbol{b})) \partial\boldsymbol{b} = \ell(\boldsymbol{y}|\tilde{\boldsymbol{b}};\boldsymbol{\alpha}) - \frac12\tilde{\boldsymbol{b}}'\boldsymbol{\Sigma}^{-1}\tilde{\boldsymbol{b}} - \frac12\ln\det(\boldsymbol{\Sigma}) - \frac12\ln\det\left(\tilde{\boldsymbol{H}}+\boldsymbol{\Sigma}^{-1}\right). $$
If one disregards the dependence of $\tilde{\boldsymbol{H}}$ on $\boldsymbol{\alpha}$ and $\boldsymbol{b}$, then $\tilde{\boldsymbol{b}}$ maximizes not only $\ell_{\text{cpl}}(\boldsymbol{y},\boldsymbol{b})$ but also $\ell^*_{\text{Lapl}}$. This motivates the following IWLS/Fisher scoring equations for $\hat{\boldsymbol{\alpha}}$ and $\tilde{\boldsymbol{b}}$ (see @breslow.clayton:approximate.inference.glmm and this page):
$$ \begin{aligned} \begin{bmatrix} \boldsymbol{X}'\boldsymbol{W}\boldsymbol{X} & \boldsymbol{X}'\boldsymbol{W}\boldsymbol{Z} \ \boldsymbol{Z}'\boldsymbol{W}\boldsymbol{X} & \boldsymbol{Z}'\boldsymbol{W}\boldsymbol{Z} + \boldsymbol{\Sigma}^{-1}\ \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\alpha}}\ \tilde{\boldsymbol{b}}\ \end{bmatrix} = \begin{bmatrix} \boldsymbol{X}'\boldsymbol{W}\boldsymbol{y}^\ \boldsymbol{Z}'\boldsymbol{W}\boldsymbol{y}^ \end{bmatrix} \end{aligned} $$
where
$$ \boldsymbol{y}^* = \boldsymbol{X}\boldsymbol{\alpha} + \boldsymbol{Z}\boldsymbol{b} + \boldsymbol{W}^{-}(\boldsymbol{y}-\boldsymbol{\pi}) $$
is the IWLS "working dependend variable" with $\boldsymbol{\alpha}$, $\boldsymbol{b}$, $\boldsymbol{W}$, and $\boldsymbol{\pi}$ computed in an earlier iteration.
Substitutions lead to the equations:
$$ (\boldsymbol{X}\boldsymbol{V}^-\boldsymbol{X})\hat{\boldsymbol{\alpha}} = \boldsymbol{X}\boldsymbol{V}^-\boldsymbol{y}^* $$
and
$$ (\boldsymbol{Z}'\boldsymbol{W}\boldsymbol{Z} + \boldsymbol{\Sigma}^{-1})\boldsymbol{b} = \boldsymbol{Z}'\boldsymbol{W}(\boldsymbol{y}^*-\boldsymbol{X}\boldsymbol{\alpha}) $$
which can be solved to compute $\hat{\boldsymbol{\alpha}}$ and $\tilde{\boldsymbol{b}}$ (for given $\boldsymbol{\Sigma}$)
Here
$$ \boldsymbol{V} = \boldsymbol{W}^-+\boldsymbol{Z}\boldsymbol{\Sigma}\boldsymbol{Z}' $$
and
$$ \boldsymbol{V}^- = \boldsymbol{W}- \boldsymbol{W}\boldsymbol{Z}'\left(\boldsymbol{Z}'\boldsymbol{W}\boldsymbol{Z}+\boldsymbol{\Sigma}^{-1}\right)^{-1}\boldsymbol{Z}\boldsymbol{W} $$
Following @breslow.clayton:approximate.inference.glmm the variance parameters in $\boldsymbol{\Sigma}$ are estimated by minimizing
$$ q_1 = \det(\boldsymbol{V})+(\boldsymbol{y}^-\boldsymbol{X}\boldsymbol{\alpha})\boldsymbol{V}^-(\boldsymbol{y}^-\boldsymbol{X}\boldsymbol{\alpha}) $$
or the "REML" variant:
$$ q_2 = \det(\boldsymbol{V})+(\boldsymbol{y}^-\boldsymbol{X}\boldsymbol{\alpha})\boldsymbol{V}^-(\boldsymbol{y}^-\boldsymbol{X}\boldsymbol{\alpha})+\det(\boldsymbol{X}'\boldsymbol{V}^{-}\boldsymbol{X}) $$
This motivates the following algorithm, which is strongly inspired by
the glmmPQL() function in Brian Ripley's R package
MASS [@MASS]:
This algorithm is a modification of the IWLS
algorithm used to fit conditional logit models without random effects.
Instead of just solving a linear requatoin in step 3, it estimates a
weighted linear mixed-effects model. In contrast to glmmPQL() it does
not use the lme() function from package
nlme [@nlme-book] for this, because the
weighting matrix $\boldsymbol{W}$ is non-diagonal. Instead, $q_1$ or
$q_2$ are minimized using the function nlminb from the standard R
package "stats" or some other optimizer chosen by the user.
The (first-order) Solomon approximation [@Solomon.Cox:1992] is based on the quadratic expansion the integrand
$$ \ell_{\text{cpl}}(\boldsymbol{y},\boldsymbol{b})\approx \ell(\boldsymbol{y}|\boldsymbol{0};\boldsymbol{\alpha}) + \boldsymbol{g}_0' \boldsymbol{b} - \frac12 \boldsymbol{b}' \boldsymbol{H}_0 \boldsymbol{b} -\frac12\ln\det(\boldsymbol{\Sigma}) -\frac12\boldsymbol{b}'\boldsymbol{\Sigma}^{-1}\boldsymbol{b} $$
where $\boldsymbol{g}_0=\boldsymbol{g}(\boldsymbol{0})$ is the gradient of $\ell(\boldsymbol{y}\|\boldsymbol{b};\boldsymbol{\alpha})$
$$ \boldsymbol{g}(\boldsymbol{b})=-\frac{\partial\ell(\boldsymbol{y}|\boldsymbol{b};\boldsymbol{\alpha})}{\partial\boldsymbol{b}} $$
at $\boldsymbol{b}=\boldsymbol{0}$, while $\boldsymbol{H}_0=\boldsymbol{H}(\boldsymbol{0})$ is the negative Hessian at $\boldsymbol{b}=\boldsymbol{0}$.
Like before, the integral of the exponential this quadratic expansion (which we refer to as $\ell_{\text{SC}}(\boldsymbol{y},\boldsymbol{b})$) has a closed-form solution, as does its logarithm, which is:
$$ \ln\int \exp(\ell_{\text{SC}}(\boldsymbol{y},\boldsymbol{b})) \partial\boldsymbol{b} = \ell(\boldsymbol{y}|\boldsymbol{0};\boldsymbol{\alpha}) - \frac12\boldsymbol{g}_0'\left(\boldsymbol{H}_0+\boldsymbol{\Sigma}^{-1}\right)^{-1}\boldsymbol{g}_0 - \frac12\ln\det(\boldsymbol{\Sigma}) - \frac12\ln\det\left(\boldsymbol{H}_0+\boldsymbol{\Sigma}^{-1}\right). $$
The resulting estimation technique is very similar to PQL [again, see @breslow.clayton:approximate.inference.glmm for a discussion]. The only difference is the construction of the "working dependent" variable $\boldsymbol{y}^$. With PQL it is constructed as $$\boldsymbol{y}^ = \boldsymbol{X}\boldsymbol{\alpha} + \boldsymbol{Z}\boldsymbol{b} + \boldsymbol{W}^{-}(\boldsymbol{y}-\boldsymbol{\pi})$$ while the MQL working dependent variable is just
$$ \boldsymbol{y}^* = \boldsymbol{X}\boldsymbol{\alpha} + \boldsymbol{W}^{-}(\boldsymbol{y}-\boldsymbol{\pi}) $$
so that the algorithm has the following steps:
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.