| morph | R Documentation |
Utility functions for variable transformation.
morph(b, r, p, center)
morph.identity()
b |
Positive real number. May be missing. |
r |
Non-negative real number. May be missing. If |
p |
Real number strictly greater than 2. May be missing. If
|
center |
Real scalar or vector. May be missing. If
|
The morph function facilitates using variable transformations
by providing functions to (using X for the original random
variable with the pdf f_X, and Y for the transformed
random variable with the pdf f_Y):
Calculate the log unnormalized probability density for Y
induced by the transformation.
Transform an arbitrary function of X to a function of
Y.
Transform values of X to values of Y.
Transform values of Y to values of X
(the inverse transformation).
for a select few transformations.
morph.identity implements the identity transformation,
Y=X.
The parameters r, p, b and center specify the
transformation function. In all cases, center gives the center
of the transformation, which is the value c in the equation
Y = f(X - c).
If no parameters are specified, the identity
transformation, Y=X, is used.
The parameters r, p and b specify a function
g, which is a monotonically increasing bijection from the
non-negative reals to the non-negative reals. Then
f(X) = g\bigl(|X|\bigr) \frac{X}{|X|}
where |X| represents the Euclidean norm of the vector X.
The inverse function is given by
f^{-1}(Y) = g^{-1}\bigl(|Y|\bigr) \frac{Y}{|Y|}.
The parameters r and p are used to define the function
g_1(x) = x + (x-r)^p I(x > r)
where I( \cdot ) is the indicator
function. We require that r is non-negative and p is
strictly greater than 2. The parameter b is used to define the
function
g_2(x) = \bigl(e^{bx} - e / 3\bigr) I(x > \frac{1}{b}) +
\bigl(x^3 b^3 e / 6 + x b e / 2\bigr) I(x \leq
\frac{1}{b})
We require that b is positive.
The parameters r, p and b specify f^{-1} in
the following manner:
If one or both of r and p is specified, and b
is not specified, then
f^{-1}(X) = g_1(|X|)
\frac{X}{|X|}.
If only
r is specified, p = 3 is used. If only p is specified,
r = 0 is used.
If only b is specified, then
f^{-1}(X) = g_2(|X|)
\frac{X}{|X|}.
If one or both of r and p is specified, and b is
also specified, then
f^{-1}(X) = g_2(g_1(|X|))
\frac{X}{|X|}.
a list containing the functions
outfun(f), a function that operates on functions.
outfun(f) returns the function function(state, ...)
f(inverse(state), ...).
inverse, the inverse transformation function.
transform, the transformation function.
lud, a function that operates on functions. As input,
lud takes a function that calculates a log unnormalized
probability density, and returns a function that calculates the
log unnormalized density by transforming a random variable using the
transform function. lud(f) = function(state, ...)
f(inverse(state), ...) + log.jacobian(state), where
log.jacobian represents the function that calculate the log
Jacobian of the transformation. log.jacobian is not returned.
The equations for the returned transform function (see below)
do not have a general analytical solution when p is not equal
to 3. This implementation uses numerical approximation to calculate
transform when p is not equal to 3. If computation
speed is a factor, it is advisable to use p=3. This is not a
factor when using morph.metrop, as transform is
only called once during setup, and not at all while running the Markov chain.
morph.metrop
# use an exponential transformation, centered at 100.
b1 <- morph(b=1, center=100)
# original log unnormalized density is from a t distribution with 3
# degrees of freedom, centered at 100.
lud.transformed <- b1$lud(function(x) dt(x - 100, df=3, log=TRUE))
d.transformed <- Vectorize(function(x) exp(lud.transformed(x)))
## Not run:
curve(d.transformed, from=-3, to=3, ylab="Induced Density")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.