Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
set.seed(20210414)
## ----setup--------------------------------------------------------------------
library(mcmcensemble)
## a log-pdf to sample from
p.log <- function(x) {
B <- 0.03 # controls 'bananacity'
-x[1]^2 / 200 - 1/2 * (x[2] + B * x[1]^2 - 100 * B)^2
}
unif_inits <- data.frame(
a = runif(10, min = 0, max = 1),
b = runif(10, min = 0, max = 1)
)
## -----------------------------------------------------------------------------
library(coda)
## -----------------------------------------------------------------------------
## use stretch move, return samples as 'coda' object
res <- MCMCEnsemble(
p.log,
inits = unif_inits,
max.iter = 3000, n.walkers = 10, method = "stretch", coda = TRUE
)
## -----------------------------------------------------------------------------
class(res$samples)
## -----------------------------------------------------------------------------
summary(res$samples)
## ----eval = identical(Sys.getenv("IN_PKGDOWN"), "true")-----------------------
# plot(res$samples)
## -----------------------------------------------------------------------------
effectiveSize(res$samples)
## -----------------------------------------------------------------------------
library(bayesplot)
## -----------------------------------------------------------------------------
res_nocoda <- MCMCEnsemble(
p.log,
inits = unif_inits,
max.iter = 3000, n.walkers = 10, method = "stretch", coda = FALSE
)
res_coda <- MCMCEnsemble(
p.log,
inits = unif_inits,
max.iter = 3000, n.walkers = 10, method = "stretch", coda = TRUE
)
## ----out.width='45%', fig.show='hold'-----------------------------------------
# Density of log-posterior of each parameter
mcmc_areas(res_nocoda$samples)
mcmc_areas(res_coda$samples)
mcmc_dens(res_nocoda$samples)
mcmc_dens(res_coda$samples)
# All the sample points in the parameter space
mcmc_scatter(res_nocoda$samples)
mcmc_scatter(res_coda$samples)
## -----------------------------------------------------------------------------
mcmc_trace(res_coda$samples)
## -----------------------------------------------------------------------------
mcmc_dens(res_coda$samples) +
overlay_function(
fun = "dunif",
geom = "density",
color = "red",
fill = "darkred",
alpha = 0.5
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.