optSmacofSym_mMDS | R Documentation |
Selecting the optimal multidimensional scaling procedure by varying all combinations of normalization methods, distance measures, and metric MDS models
optSmacofSym_mMDS(x,normalizations=NULL,distances=NULL,
mdsmodels=NULL,weights=NULL,spline.degrees=c(2),
outputCsv="",outputCsv2="",outDec=",",
stressDigits=6,HHIDigits=2,...)
x |
matrix or dataset |
normalizations |
optional, vector of normalization methods that should be used in procedure |
distances |
optional, vector of distance measures (manhattan, Euclidean, Chebyshew, squared Euclidean, GDM1) that should be used in procedure |
mdsmodels |
optional, vector of multidimensional models (ratio, interval, mspline) that should be used in procedure |
spline.degrees |
optional, vector (e.g. 2:4) of spline.degree parameter values that should be used in procedure for mspline model |
weights |
optional, variable weights used in distance calculation. Each weight takes value from interval [0; 1] and sum of weights equals one |
outputCsv |
optional, name of csv file with results |
outputCsv2 |
optional, name of csv (comma as decimal point sign) file with results |
outDec |
decimal sign used in returned table |
stressDigits |
Number of decimal digits for displaying Stress 1 value |
HHIDigits |
Number of decimal digits for displaying HHI spp value |
... |
arguments passed to smacofSym, like ndim, itmax, eps and others |
Parameter normalizations
may be the subset of the following values:
"n1","n2","n3","n3a","n4","n5","n5a","n6","n6a",
"n7","n8","n9","n9a","n10","n11","n12","n12a","n13"
(e.g. normalizations=c("n1","n2","n3","n5","n5a",
"n8","n9","n9a","n11","n12a"))
if normalizations
is set to "n0" no normalization is applied
Parameter distances
may be the subset of the following values:
"euclidean","manhattan","maximum","seuclidean","GDM1"
(e.g. distances=c("euclidean","manhattan"))
Parameter mdsmodels
may be the subset of the following values (metric MDS):
"ratio","interval","mspline" (e.g. c("ratio","interval"))
Data frame ordered by increasing value of Stress-1 fit measure with columns:
Normalization method |
normalization method used for p-th multidimensional scaling procedure |
MDS model |
MDS model used for p-th multidimensional scaling procedure |
Spline degree |
Additional spline.degree value if mspline model is used for simulation, for other models there is no value in this cell |
Distance measure |
distance measure used for p-th multidimensional scaling procedure |
STRESS 1 |
value of Kruskal Stress-1 fit measure for p-th multidimensional scaling procedure |
HHI spp |
Hirschman-Herfindahl HHI index calculated based on stress per point for p-th multidimensional scaling procedure |
Marek Walesiak marek.walesiak@ue.wroc.pl, Andrzej Dudek andrzej.dudek@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics and Business, Poland
Borg, I., Groenen, P.J.F. (2005), Modern Multidimensional Scaling. Theory and Applications, 2nd Edition, Springer Science+Business Media, New York. ISBN: 978-0387-25150-9. Available at: https://link.springer.com/book/10.1007/0-387-28981-X.
Borg, I., Groenen, P.J.F., Mair, P. (2013), Applied Multidimensional Scaling, Springer, Heidelberg, New York, Dordrecht, London. Available at: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-3-642-31848-1")}.
De Leeuw, J., Mair, P. (2015), Shepard Diagram, Wiley StatsRef: Statistics Reference Online, John Wiley & Sons Ltd.
Dudek, A., Walesiak, M. (2020), The Choice of Variable Normalization Method in Cluster Analysis, pp. 325-340, [In:] K. S. Soliman (Ed.), Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges, Proceedings of the 35th International Business Information Management Association Conference (IBIMA), 1-2 April 2020, Seville, Spain. ISBN: 978-0-9998551-4-1.
Herfindahl, O.C. (1950), Concentration in the Steel Industry, Doctoral thesis, Columbia University.
Hirschman, A.O. (1964), The Paternity of an Index, The American Economic Review, Vol. 54, 761-762.
Walesiak, M. (2014), Przegląd formuł normalizacji wartości zmiennych oraz ich własności w statystycznej analizie wielowymiarowej [Data Normalization in Multivariate Data Analysis. An Overview and Properties], Przegląd Statystyczny, tom 61, z. 4, 363-372. Available at: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.5604/01.3001.0016.1740")}.
Walesiak, M. (2016a), Wybór grup metod normalizacji wartości zmiennych w skalowaniu wielowymiarowym [The Choice of Groups of Variable Normalization Methods in Multidimensional Scaling], Przegląd Statystyczny, tom 63, z. 1, 7-18. Available at: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.5604/01.3001.0014.1145")}.
Walesiak, M. (2016b), Visualization of Linear Ordering Results for Metric Data with the Application of Multidimensional Scaling, Ekonometria, 2(52), 9-21. Available at: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.15611/ekt.2016.2.01")}.
Walesiak, M., Dudek, A. (2017), Selecting the Optimal Multidimensional Scaling Procedure for Metric Data with R Environment, STATISTICS IN TRANSITION new series, September, Vol. 18, No. 3, pp. 521-540.
Walesiak, M., Dudek, A. (2020), Searching for an Optimal MDS Procedure for Metric and Interval-Valued Data using mdsOpt R package, pp. 307-324, [In:] K. S. Soliman (Ed.), Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges, Proceedings of the 35th International Business Information Management Association Conference (IBIMA), 1-2 April 2020, Seville, Spain. ISBN: 978-0-9998551-4-1.
data.Normalization
, dist.GDM
, dist
, smacofSym
library(mdsOpt)
metnor<-c("n1","n2","n3","n5","n5a","n8","n9","n9a","n11","n12a")
metscale<-c("ratio","interval","mspline")
metdist<-c("euclidean","manhattan","seuclidean","maximum","GDM1")
data(data_lower_silesian)
res<-optSmacofSym_mMDS(data_lower_silesian,,normalizations=metnor,distances=metdist,
mdsmodels=metscale, spline.degrees=c(2:3),outDec=".")
stress<-as.numeric(gsub(",",".",res[,"STRESS 1"],fixed=TRUE))
hhi<-as.numeric(gsub(",",".",res[,"HHI spp"],fixed=TRUE))
cs<-(min(stress)+max(stress))/2 # critical stress
t<-findOptimalSmacofSym(res,critical_stress=cs)
print(t)
plot(stress[-t$Nr],hhi[-t$Nr], xlab="Stress-1", ylab="HHI",type="n",font.lab=3)
text(stress[-t$Nr],hhi[-t$Nr],labels=(1:nrow(res))[-t$Nr])
abline(v=cs,col="red")
points(stress[t$Nr],hhi[t$Nr], cex=5,col="red")
text(stress[t$Nr],hhi[t$Nr],labels=(1:nrow(res))[t$Nr],col="red")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.