Performance

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  dpi = 300,
  fig.width = 7,
  fig.height = 5,
  fig.align = "center",
  out.width = "100%"
)

All the tests were done on an Arch Linux x86_64 machine with an Intel(R) Core(TM) i7 CPU (1.90GHz). We first load the necessary packages.

library(melt)
library(microbenchmark)
library(ggplot2)

Empirical likelihood computation

We show the performance of computing empirical likelihood with el_mean(). We test the computation speed with simulated data sets in two different settings: 1) the number of observations increases with the number of parameters fixed, and 2) the number of parameters increases with the number of observations fixed.

Increasing the number of observations

We fix the number of parameters at $p = 10$, and simulate the parameter value and $n \times p$ matrices using rnorm(). In order to ensure convergence with a large $n$, we set a large threshold value using el_control().

set.seed(3175775)
p <- 10
par <- rnorm(p, sd = 0.1)
ctrl <- el_control(th = 1e+10)
result <- microbenchmark(
  n1e2 = el_mean(matrix(rnorm(100 * p), ncol = p), par = par, control = ctrl),
  n1e3 = el_mean(matrix(rnorm(1000 * p), ncol = p), par = par, control = ctrl),
  n1e4 = el_mean(matrix(rnorm(10000 * p), ncol = p), par = par, control = ctrl),
  n1e5 = el_mean(matrix(rnorm(100000 * p), ncol = p), par = par, control = ctrl)
)

Below are the results:

result
autoplot(result)

Increasing the number of parameters

This time we fix the number of observations at $n = 1000$, and evaluate empirical likelihood at zero vectors of different sizes.

n <- 1000
result2 <- microbenchmark(
  p5 = el_mean(matrix(rnorm(n * 5), ncol = 5),
    par = rep(0, 5),
    control = ctrl
  ),
  p25 = el_mean(matrix(rnorm(n * 25), ncol = 25),
    par = rep(0, 25),
    control = ctrl
  ),
  p100 = el_mean(matrix(rnorm(n * 100), ncol = 100),
    par = rep(0, 100),
    control = ctrl
  ),
  p400 = el_mean(matrix(rnorm(n * 400), ncol = 400),
    par = rep(0, 400),
    control = ctrl
  )
)
result2
autoplot(result2)

On average, evaluating empirical likelihood with a 100000×10 or 1000×400 matrix at a parameter value satisfying the convex hull constraint takes less than a second.



Try the melt package in your browser

Any scripts or data that you put into this service are public.

melt documentation built on May 31, 2023, 7:12 p.m.