Nothing
knitr::opts_chunk$set( echo = FALSE, message = FALSE, warning = FALSE, cache = FALSE, fig.width = 12, fig.align = "center" ) options(width = 999) endpoint <- params$endpoint forest_height_overall <- switch ( endpoint, "VO2max" = 12, "Flow-mediated Dilation" = 4, "BMI" = 8, "Body Mass" = 11, "Body Fat" = 8, "Systolic Blood Pressure" = 8, "Diastolic Blood Pressure" = 8, "HDL" = 8, "LDL" = 8, "Triglycerides" = 8, "Total Cholesterol" = 8, "C-reactive Protein" = 4, "Fasting Insulin" = 6, "Fasting Glucose" = 8, "HbA1c" = 6, "HOMA-IR" = 6 )
library(metabolic)
Mattioni Maturana, Felipe, Martus, Peter, Zipfel, Stephan, Nieß, AM (2020). “Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: a meta-anaylsis.” Medicine & Science in Sports & Exercise, Published Ahead of Print. doi: 10.1249/MSS.0000000000002506
results <- perform_meta(endpoint = endpoint) results$meta_analysis$Overall %>% plot_metabolic()
results$meta_analysis$Overall
results$sensitivity_analysis$Overall %>% plot_metabolic()
results$sensitivity_analysis$Overall
results$meta_analysis$Overall %>% plot_small_study_effects()
results_bind <- perform_bind(results$meta_analysis) results_bind %>% plot_metabolic()
results_bind
out <- results %>% dplyr::filter(subgroup != "Overall") %>% dplyr::mutate( endpoint = endpoint, output = purrr::map2(endpoint, subgroup, ~ knitr::knit_expand(file = system.file("endpoint-report-level-2.Rmd", package = "metabolic"), endpoint = .x, subgroup = .y)) ) %>% dplyr::select(output) %>% tibble::deframe()
r knitr::knit(text = unlist(out))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.