est.sd.2g | R Documentation |
This function estimates the sample standard deviations (SD) from a two group study presenting quantile summary measures with the sample size (n
).
The quantile summaries of each group can fall into one of the following categories:
S_1
: { minimum, median, maximum }
S_2
: { first quartile, median, third quartile }
S_3
: { minimum, first quartile, median, third quartile, maximum }
The est.sd.2g
function uses a novel quantile-based distribution methods for estimating sample SD for two groups such as 'Treatment' and 'Control' (De Livera et al., 2024).
The method is based on the following quantile-based distributions:
Generalized Lambda Distribution (GLD) for estimating sample SDs using
5-number summaries (S_3
).
Skew Logistic Distribution (SLD) for estimating sample SDs using
3-number summaries (S_1
and S_2
).
est.sd.2g(
min.g1 = NULL,
q1.g1 = NULL,
med.g1 = NULL,
q3.g1 = NULL,
max.g1 = NULL,
min.g2 = NULL,
q1.g2 = NULL,
med.g2 = NULL,
q3.g2 = NULL,
max.g2 = NULL,
n.g1,
n.g2,
opt = TRUE
)
min.g1 |
numeric value representing the sample minimum of group 1. |
q1.g1 |
numeric value representing the first quartile of group 1. |
med.g1 |
numeric value representing the median of group 1. |
q3.g1 |
numeric value representing the third quartile of group 1. |
max.g1 |
numeric value representing the sample maximum of group 1. |
min.g2 |
numeric value representing the sample minimum of group 2. |
q1.g2 |
numeric value representing the first quartile of group 2. |
med.g2 |
numeric value representing the median of group 2. |
q3.g2 |
numeric value representing the third quartile of group 2. |
max.g2 |
numeric value representing the sample maximum of group 2. |
n.g1 |
numeric value specifying the sample size of group 1. |
n.g2 |
numeric value specifying the sample size of group 2. |
opt |
logical value indicating whether to apply the optimization step in estimating
the parameters of GLD or SLD. Default is |
For details explaining the method of estimating using GLD or SLD, check est.mean.2g
.
A list containing the estimated sample SDs for the two groups:
sd.g1
: numeric value representing the estimated standard deviation of group 1.
sd.g2
: numeric value representing the estimated standard deviation of group 2.
Alysha De Livera, Luke Prendergast, and Udara Kumaranathunga. A novel density-based approach for estimating unknown means, distribution visualisations, and meta-analyses of quantiles. Submitted for Review, 2024, pre-print available here: https://arxiv.org/abs/2411.10971
est.sd
for estimating standard deviation from one-group quantile data.
#Generate 5-point summary data for two groups
set.seed(123)
n_t <- 1000
n_c <- 1500
x_t <- stats::rlnorm(n_t, 5, 0.5)
x_c <- 1.1*(stats::rlnorm(n_c, 5, 0.5))
q_t <- c(min(x_t), stats::quantile(x_t, probs = c(0.25, 0.5, 0.75)), max(x_t))
q_c <- c(min(x_c), stats::quantile(x_c, probs = c(0.25, 0.5, 0.75)), max(x_c))
obs_sd_t <- sd(x_t)
obs_sd_c <- sd(x_c)
#Estimate sample SD using s3 (5 number summary)
est_sds_s3 <- est.sd.2g(q_t[1],q_t[2],q_t[3],q_t[4],q_t[5],
q_c[1],q_c[2],q_c[3],q_c[4],q_c[5],
n.g1 = n_t,
n.g2 = n_c)
est_sds_s3
#Estimate sample SD using s1 (min, med, max)
est_sds_s1 <- est.sd.2g(min.g1=q_t[1], med.g1=q_t[3], max.g1=q_t[5],
min.g2=q_c[1], med.g2=q_c[3], max.g2=q_c[5],
n.g1 = n_t,
n.g2 = n_c)
est_sds_s1
#Estimate sample SD using s2 (q1, med, q3)
est_sds_s2 <- est.sd.2g(q1.g1=q_t[2], med.g1=q_t[3], q3.g1=q_t[4],
q1.g2=q_c[2], med.g2=q_c[3], q3.g2=q_c[4],
n.g1 = n_t,
n.g2 = n_c)
est_sds_s2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.